HUANG Yan, LUO Yuqin, ZHANG Lingzhi, et al. Evaluation of White Tea Grades Based on Near Infrared Spectroscopy and Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(21): 348−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010176.
Citation: HUANG Yan, LUO Yuqin, ZHANG Lingzhi, et al. Evaluation of White Tea Grades Based on Near Infrared Spectroscopy and Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(21): 348−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010176.

Evaluation of White Tea Grades Based on Near Infrared Spectroscopy and Gas Chromatography-Ion Mobility Spectroscopy

More Information
  • Received Date: February 05, 2023
  • Available Online: September 05, 2023
  • Tea grade evaluation is a systematic work with complex and subjective. Grade information from its relevant quality data extracted enables to establish rapid identification method, later of which has guiding meaning to tea production. To establish a rapid identification method of white tea grades, 200 white tea (Bai Mudan) samples with 4 grades were selected as the research objects in this paper, near infrared spectroscopy and gas chromatography-ion mobility spectrometry were used to collect original data. The data dimensions were reduced by principal component analysis or linear discriminant analysis, combed with 7 data mining classifier algorithms to rapidly evaluate the grades of white tea. Results showed that linear discriminant analysis was suitable for dimensionality reduction of the original data from near infrared spectra and gas chromatography-ion mobility spectrometry. After dimensionality reduction of the original data using linear discriminant analysis, classification algorithm including adaptive boosting (Adaboost), k-nearest neighbor (KNN) and multi-layer perceptron (MLP), and random forests (RF), stochastic gradient descent (SGD) and support vector machines (SVM) were used for establishment of white tea grade discriminant models based on near infrared spectroscopy, the correct rate of these models were greater than 94%, and the AUC of the model evaluation index was≥0.95. The discriminant rates of MLP, SGD and SVM models based on gas chromatography-ion mobility spectrometry filtered spectrum data were 91%~93% and the AUC value were 0.94~0.96. The positive judgment rate of models from Adaboost, decision tree (DT), KNN, MLP, SGD and SVM models based on gas chromatography-ion mobility spectrometry labeled substance data was 100%, and the AUC was 1.0, while the model evaluation index of RF model were 96% and 0.98, respectively. With near infrared spectrum and volatile compound characteristic data as important parameters for white tea grade evaluation, 6 and 10 kinds of grade discrimination models were built, which could accurately determine the grade of white tea, and the classifier algorithm was suitable for the modeling of these two types of data.
  • [1]
    梅宇, 林璇. 2017中国白茶产销形势分析报告[J]. 福建茶叶,2017,39(9):3−5 doi: 10.3969/j.issn.1005-2291.2017.09.002

    MEI Y, LIN X. China white tea production and marketing situation analysis report in 2017[J]. Tea in Fujian,2017,39(9):3−5. doi: 10.3969/j.issn.1005-2291.2017.09.002
    [2]
    梅宇, 王智超. 2015全国春茶产销形势分析报告[J]. 广东茶业,2015,3:23−28 doi: 10.3969/j.issn.1672-7398.2015.03.008

    MEI Y, WANG Z C. National spring tea production and marketing situation analysis report in 2015[J]. Guangdong Tea Industry,2015,3:23−28. doi: 10.3969/j.issn.1672-7398.2015.03.008
    [3]
    张雪娇. 福鼎白茶区域品牌可持续发展研究[D]. 福州:福建农林大学, 2020

    ZHANG X J. Study on regional brand sustainable development of Fuding white tea[D]. Fuzhou:Fujian Agriculture and Forestry University, 2020.
    [4]
    GAO L, BIAN M X, MI R F, et al. Quality identification and evaluation of Pu-erh teas of different grade levels and various ages through sensory evaluation and instrumental analysis[J]. International Journal of Food Science and Technology,2016,51(6):1338−1348. doi: 10.1111/ijfs.13103
    [5]
    范培珍, 郑雨婷, 王梦馨, 等. 不同等级霍山黄芽茶滋味的电子舌评价及呈味氨基酸组成[J]. 贵州农业科学,2017,45(5):105−109 doi: 10.3969/j.issn.1001-3601.2017.05.026

    FANG P Z, ZHENG Y T, WANG M X, et al. Taste and delicious amino acid composition of Huoshanhuangya tea with different grades determined by an electronic tongue[J]. Guizhou Agricultural Sciences,2017,45(5):105−109. doi: 10.3969/j.issn.1001-3601.2017.05.026
    [6]
    贺玮, 胡小松, 赵镭, 等. 电子舌技术在普洱散茶等级评价中的应用[J]. 食品工业科技,2009,30(11):125−127, 131

    HE W, HU X S, ZHAO L, et al. Application of electronic tongue in the Pu-er tea quality grade analysis[J]. Science and Technology of Food Industry,2009,30(11):125−127, 131.
    [7]
    QIN Z H, PANG X L, CHEN D, et al. Evaluation of Chinese tea by the electronic nose and gas chromatography-mass spectrometry:Correlation with sensory properties and classification according to grade level[J]. Food Research International,2013,53(2):864−874. doi: 10.1016/j.foodres.2013.02.005
    [8]
    虞培力, 赵粼, 王晞丞, 等. 人工智能对龙井茶等级识别研究[J]. 现代农业科技,2018,712(2):260−263 doi: 10.3969/j.issn.1007-5739.2018.02.144

    YU P L, ZHAO L, WANG X C, et al. Study on Longjing tea classification by artificial intelligence[J]. Modern Agricultural Science and Technology,2018,712(2):260−263. doi: 10.3969/j.issn.1007-5739.2018.02.144
    [9]
    刘洋, 余天星, 李明玺, 等. 基于近红外光谱技术的信阳毛尖品质判别研究[J]. 现代食品科技,2018,34(8):225−230, 251 doi: 10.13982/j.mfst.1673-9078.2018.8.033

    LIU Y, YU T X, LI M X, et al. Quality discriminant of Xinyang Maojian tea based on near infrared spectroscopy[J]. Modern Food Science and Technology,2018,34(8):225−230, 251. doi: 10.13982/j.mfst.1673-9078.2018.8.033
    [10]
    彭清维, 刘芸, 于建成, 等. 基于可见/近红外光谱技术的湄潭翠芽等级判别[J]. 茶叶科学,2017,37(5):458−464 doi: 10.3969/j.issn.1000-369X.2017.05.004

    PENG Q W, LIU Y, YU J C, et al. Identification of Meitan Cuiya tea grades based on visible-near-infrared technology[J]. Journal of Tea Science,2017,37(5):458−464. doi: 10.3969/j.issn.1000-369X.2017.05.004
    [11]
    蒋帆, 乔欣, 郑华军, 等. 基于高光谱分析技术的机炒龙井茶等级识别方法[J]. 农业工程学报,2011,27(7):343−348 doi: 10.3969/j.issn.1002-6819.2011.07.060

    JIANG F, QIAO X, ZHENG H J, et al. Grade discrimination of machine-fried Longjing tea based on hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(7):343−348. doi: 10.3969/j.issn.1002-6819.2011.07.060
    [12]
    SUHANDY D, YULIA M. Potential application of UV-visible spectroscopy and PLS-DA method to discriminate Indonesian CTC black tea according to grade levels[J]. IOP Conference Series Earth and Environmental Science,2019,258:12042. doi: 10.1088/1755-1315/258/1/012042
    [13]
    龙立梅, 宋沙沙, 曹学丽. 基于香气成分气相色谱-质谱指纹图谱的判别分析和相似度评价用于绿茶等级差异研究[J]. 色谱,2019,37(3):325−330 doi: 10.3724/SP.J.1123.2018.10017

    LONG L M, SONG S S, CAO X L. Discriminant analysis and similarity evaluation of gas chromatography-mass spectrometry fingerprints of aroma components in green tea grading[J]. Chinese Journal of Chromatography,2019,37(3):325−330. doi: 10.3724/SP.J.1123.2018.10017
    [14]
    刘臣, 唐长波, 张雷, 等. 苏州洞庭碧螺春茶指纹图谱及不同等级茶叶品质比较[J]. 江苏农业科学,2012,40(12):330−333 doi: 10.3969/j.issn.1002-1302.2012.12.133

    LIU C, TANG C B, ZHAO L, et al. Fingerprint of Suzhou Dongting Biluochun tea and quality comparison of different grades of tea[J]. Jiangsu Agricultural Sciences,2012,40(12):330−333. doi: 10.3969/j.issn.1002-1302.2012.12.133
    [15]
    潘天红, 李鱼强, 陈琦, 等. 基于Elastic Net特征变量选择的黄山毛峰茶等级评价[J]. 农业工程学报,2020,36(13):264−271 doi: 10.11975/j.issn.1002-6819.2020.13.031

    PAN T H, LI Y Q, CHEN Q, et al. Evaluation of Huangshan Maofeng tea grades based on feature variable selection using Elastic Net[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(13):264−271. doi: 10.11975/j.issn.1002-6819.2020.13.031
    [16]
    ZHU J, ZHU F Y, LI L Q, et al. Highly discriminant rate of Dianhong black tea grades based on fluorescent probes combined with chemometric methods[J]. Food Chemistry,2019,298(15):125046.
    [17]
    张程, 王进, 鲁晓卉, 等. 基于图像颜色和纹理特征的成品茶种类与等级识别[J]. 中国茶叶加工,2020,160(2):5−11 doi: 10.15905/j.cnki.33-1157/ts.2020.02.001

    ZHANG C, WANG J, LU X H, et al. Recognition of types and grades of tea products based on image color and texture features[J]. China Tea Processing,2020,160(2):5−11. doi: 10.15905/j.cnki.33-1157/ts.2020.02.001
    [18]
    任广鑫, 金珊珊, 李露青, 等. 近红外光谱技术在茶叶品控与装备创制领域的研究进展[J]. 茶叶科学,2020,40(6):707−714 doi: 10.3969/j.issn.1000-369X.2020.06.012

    REN G X, JIN S S, LI L Q, et al. Research progress of near-infrared spectroscopy in tea quality control and equipment development[J]. Journal of Tea Science,2020,40(6):701−714. doi: 10.3969/j.issn.1000-369X.2020.06.012
    [19]
    王胜鹏, 高士伟, 滕靖, 等. 近红外光谱技术在茶叶中的研究进展[J]. 华中农业大学学报,2021,40(5):226−232 doi: 10.13300/j.cnki.hnlkxb.2021.05.027

    WANG S P, GAO S W, TENG J, et al. Progress of using near infrared spectroscopy in tea[J]. Journal of Huazhong Agricultural University,2021,40(5):226−232. doi: 10.13300/j.cnki.hnlkxb.2021.05.027
    [20]
    周健, 成浩, 曾建明, 等. 基于近红外的多相偏最小二乘模型组合分析实现茶叶原料品种鉴定与溯源的研究[J]. 光谱学与光谱分析,2010,30(10):2650−2653 doi: 10.3964/j.issn.1000-0593(2010)10-2650-04

    ZHOU J, CHEN H, ZENG J M, et al. Study on identification and traceability of tea material cultivar by combined analysis of multi-partial least squares models based on near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2010,30(10):2650−2653. doi: 10.3964/j.issn.1000-0593(2010)10-2650-04
    [21]
    杨梦璇. 基于近红外光谱技术的白茶品质快速评价方法的研究[D]. 杭州:浙江大学, 2017

    YANG M X. Study on rapid evaluation method of white tea quality based on near infrared spectroscopy[D]. Hangzhou:Zhejiang University, 2017.
    [22]
    张瑞廷, 程江辉, 徐佳. 气相离子迁移谱在食品风味研究中的应用[J]. 现代食品,2020,10:167−169 doi: 10.16736/j.cnki.cn41-1434/ts.2020.10.057

    ZHANG R T, CHENG J H, XU J, et al. Application of gas chromatography ionmobility spectrometry in the study of food flavor[J]. Modern Food,2020,10:167−169. doi: 10.16736/j.cnki.cn41-1434/ts.2020.10.057
    [23]
    刘亚芹, 王辉, 黄建琴, 等. GC-IMS在绿茶挥发性物质定性分析中的应用[J]. 中国茶叶加工,2020,159(1):55−59 doi: 10.15905/j.cnki.33-1157/ts.2020.01.014

    LIU Y Q, WANG H, HUAGN J Q, et al. Application of GC-IMS in qualitative analysis of volatile compounds in green tea[J]. China Tea Processing,2020,159(1):55−59. doi: 10.15905/j.cnki.33-1157/ts.2020.01.014
    [24]
    林若川, 邓榕, 许丽蓉. 基于GC-IMS技术的绿茶风味鉴别方法可行性的研究[J]. 广东化工,2017,44(23):19−21 doi: 10.3969/j.issn.1007-1865.2017.23.012

    LIN R C, DENG R, XU L R. Feasibility study of green tea flavor identification based on GC-IMS technology[J]. Guangdong Chemical Industry,2017,44(23):19−21. doi: 10.3969/j.issn.1007-1865.2017.23.012
    [25]
    祁兴普, 刘纯友, 佀再勇, 等. 基于风味指纹谱的庐山云雾茶品质等级研究[J]. 食品研究与开发,2021,42(14):152−157 doi: 10.12161/j.issn.1005-6521.2021.14.024

    QI X P, LIU C Y, SI Z Y, et al. Study on quality grading of Lushan cloud-fog tea based on flavor fingerprints[J]. Science and Technology of Food Industry,2021,42(14):152−157. doi: 10.12161/j.issn.1005-6521.2021.14.024
    [26]
    郭向阳, 霍羽佳, 王本友, 等. 采用气相色谱-离子迁移谱分析黄大茶加工过程挥发性成分[J]. 农业工程学报,2021,37(6):274−281

    GUO X Y, HUO Y J, WANG B Y, et al. Analysis of volatile compounds in large-leaf yellow tea during manufacturing processes using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(6):274−281.
    [27]
    王志华, 薛志慧, 朱文伟, 等. 基于GC-IMS的不同年份紧压白茶挥发性物质分析[J]. 食品与生物技术学报,2021,40(8):85−94 doi: 10.3969/j.issn.1673-1689.2021.08.011

    WANG Z H, XUE Z H, ZHU W W, et al. Analyses of volatile compounds in compressed white tea of different years based on GC-IMS [J]. Journal of Food Science and Biotechnology,2021,40(8):85−94. doi: 10.3969/j.issn.1673-1689.2021.08.011
    [28]
    沈诗钰, 孙威江, 唐琴, 等. 基于近红外光谱技术的白茶可溶性糖总量快速测定研究[J]. 天然产物研究与开发,2019,31(1):16−23 doi: 10.16333/j.1001-6880.2019.1.003

    SHEN S Y, SUN W J, TANG Q, et al. Rapid determination of total water-soluble sugars in white tea by near-infrared spectroscopy[J]. Natural Product Research and Development,2019,31(1):16−23. doi: 10.16333/j.1001-6880.2019.1.003
    [29]
    罗玉琴, 韦燕菊, 林琳, 等. 基于GC-IMS技术的福建白茶产地判别[J]. 农业工程学报,2021,37(6):264−273 doi: 10.11975/j.issn.1002-6819.2021.06.032

    LUO Y Q, WEI Y J, LIN L, et al. Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(6):264−273. doi: 10.11975/j.issn.1002-6819.2021.06.032
    [30]
    祝海江, 唐昊, 孙静娴, 等. 基于时频谱特征的白酒品质分类方法研究[J]. 光谱学与光谱分析, 2021, 41(9):2962−2968

    ZHU H J, TANG H, SUN J X, et al. Classification method of liquor quality based on time and frequency spectrum characteristics[J]. Spectroscopy and Spectral Analysis, 2021, 41(9):2962−2968.
    [31]
    YANG J, WANG J, LU G, et al. TeaNet:deep learning on near-infrared spectroscopy (NIR) data for the assurance of tea quality[J]. Computer and Electronics in Agriculture,2021,190, 106431. doi: 10.1016/j.compag.2021.106431
    [32]
    ZHANG L, DAI H, ZHANG J, et al. A study on origin traceability of white tea (white peony) based on near-infrared spectroscopy and machine learning algorithms[J]. Foods,2023,12, 499. doi: 10.3390/foods12030499
    [33]
    ZONG X, SHENG X, LI L, et al. Rapid detection of moisture content in the processing Longjing tea by micro-near-infrared spectroscopy and a portable colorimeter based on a data fusion strategy[J]. Horticulturae,2022,8(11):1007. doi: 10.3390/horticulturae8111007
    [34]
    DANKOWSKA A, KOWALEWSKI W. Tea type classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,211:195−202. doi: 10.1016/j.saa.2018.11.063
    [35]
    JIN G, ZHU Y, CUI C, et al. Tracing the origin of Taiping Houkui green tea using 1H NMR and HS-SPME-GC-MS chemical fingerprints, data fusion and chemometrics[J]. Food Chemistry,2023,425:136538. doi: 10.1016/j.foodchem.2023.136538
  • Cited by

    Periodical cited type(4)

    1. 张瑜. 气质膨化即食牛蹄筋加工工艺研究. 保鲜与加工. 2024(03): 40-46 .
    2. 卢相龙,胡秦晓,秦斐. 杏皮水酸奶冻饮品制作工艺优化及品质研究. 饮料工业. 2024(05): 45-50 .
    3. 薛山,黄艺萍. 四维辅助三维响应面法优化菠萝蜜种泥果冻配方. 食品工业. 2022(01): 156-161 .
    4. 李想,宋弘扬,赵存朝,盛军,陶亮,田洋. 一种特色百香果果冻产品的研制. 食品工业科技. 2021(06): 159-165 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (95) PDF downloads (20) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return