Citation: | CHU Shaoxuan, WANG Xiao, TANG Zheng, et al. Action Mechanism of Nelumbo nucifera Leaf Alkaloids in the Treatment of Hyperuricemia Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2024, 45(17): 10−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110189. |
[1] |
AIHEMAITIJIANG S, ZHANG Y, ZHANG L, et al. The association between purine-rich food intake and hyperuricemia:A cross-sectional study in Chinese adult residents[J]. Nutrients,2020,12(12):3835. doi: 10.3390/nu12123835
|
[2] |
HASSAN W, SHRESTHA P, SUMIDA K, et al. Association of uric acid-lowering therapy with incident chronic kidney disease[J]. JAMA Network Open,2022,5(6):e2215878. doi: 10.1001/jamanetworkopen.2022.15878
|
[3] |
DALBETH N, CHOI H K, JOOSTEN L A B, et al. Gout[J]. Nature Reviews Disease Primers,2019,5(1):69. doi: 10.1038/s41572-019-0115-y
|
[4] |
LAI S W, LIAO K F, KUO Y H, et al. Comparison of benzbromarone and allopurinol on the risk of chronic kidney disease in people with asymptomatic hyperuricemia[J]. European Journal of Internal Medicine,2023,113:91−97. doi: 10.1016/j.ejim.2023.04.025
|
[5] |
PIANI F, AGNOLETTI D, BORGHI C. Advances in pharmacotherapies for hyperuricemia[J]. Expert Opinion on Pharmacotherapy,2023,24(6):737−745. doi: 10.1080/14656566.2023.2197591
|
[6] |
罗栩强, 刘经相, 曾丽婷, 等. 不同产地荷叶中二氧化硫和荷叶碱含量测定研究[J]. 海峡药学,2022,34(3):75−78. [LUO X Q, LIU J X, ZENG L T, et al. Study on determination of sulfur dioxide and nuciferine in lotus leaf from different origins[J]. Strait Pharmaceutical Journal,2022,34(3):75−78.] doi: 10.3969/j.issn.1006-3765.2022.03.018
LUO X Q, LIU J X, ZENG L T, et al. Study on determination of sulfur dioxide and nuciferine in lotus leaf from different origins[J]. Strait Pharmaceutical Journal, 2022, 34(3): 75−78. doi: 10.3969/j.issn.1006-3765.2022.03.018
|
[7] |
NING Q, WANG Y, ZHANG Y, et al. Nuciferine prevents hepatic steatosis by regulating lipid metabolismin diabetic rat model[J]. Open Life Sciences,2019,14(1):699−706. doi: 10.1515/biol-2019-0079
|
[8] |
陈绮梦, 杨祖伟, 李珍, 等. 荷叶提取液的性能探究[J]. 食品安全质量检测学报,2020,11(23):8715−8720. [CHEN Q M, YANG Z W, LI Z, et al. Research on the performance of lotus leaf extract[J]. Journal of Food Safety and Quality,2020,11(23):8715−8720.]
CHEN Q M, YANG Z W, LI Z, et al. Research on the performance of lotus leaf extract[J]. Journal of Food Safety and Quality, 2020, 11(23): 8715−8720.
|
[9] |
KASHIWADA Y, AOSHIMA A, LKESHIRO Y, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids[J]. Bioorganic & Medicinal Chemistry,2005,13(2):443−448.
|
[10] |
HU P, GE X, GAO M T, et al. Nelumbo nucifera Gaertn:An updated review of the antitumor activity and mechanisms of alkaloids[J]. Pharmacological Research-Modern Chinese Medicine,2022,5:100167. doi: 10.1016/j.prmcm.2022.100167
|
[11] |
ZHANG C, DENG J, LIU D, et al. Nuciferine inhibits proinflammatory cytokines via the PPARs in LPS-induced RAW264.7 cells[J]. Molecules,2018,23(10):2723. doi: 10.3390/molecules23102723
|
[12] |
ZHOU T, SONG G, TIAN D, et al. Nuciferine relieves type 2 diabetes mellitus via enhancing GLUT4 expression and translocation[J]. Food Science and Human Wellness,2023,12(6):2040−2051. doi: 10.1016/j.fshw.2023.03.020
|
[13] |
ZHANG H, CHEN G, ZHANG Y, et al. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets[J]. Food Chemistry,2022,375:131856. doi: 10.1016/j.foodchem.2021.131856
|
[14] |
WANG M X, LIU Y L, YANG Y, et al. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice[J]. European Journal of Pharmacology,2015,747:59−70. doi: 10.1016/j.ejphar.2014.11.035
|
[15] |
ZHAO L, ZHANG H, LI N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. Journal of Ethnopharmacology,2023,309:116306. doi: 10.1016/j.jep.2023.116306
|
[16] |
李玲玉, 朱文卿, 朱姗姗, 等. 基于网络药理学分析咖啡酰奎宁酸类化合物治疗Ⅱ型糖尿病的作用机制[J]. 食品工业科技,2021,42(14):16−24. [LI L Y, ZHU W Q, ZHU S S, et al. Mechanism of caffeoylquinic acids in the treatment of type Ⅱ diabetes based on network pharmacology[J]. Science and Technology of Food Industry,2021,42(14):16−24.]
LI L Y, ZHU W Q, ZHU S S, et al. Mechanism of caffeoylquinic acids in the treatment of type Ⅱ diabetes based on network pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 16−24.
|
[17] |
朱文卿, 李玲玉, 张利, 等. 咖啡酰奎宁酸类化合物抑菌活性的网络药理学研究[J]. 食品工业科技,2021,42(13):11−20. [ZHU W Q, LI L Y, ZHANG L, et al. Network pharmacology study on the antibacterial activity of caffeoylquinic acids[J]. Science and Technology of Food Industry,2021,42(13):11−20.]
ZHU W Q, LI L Y, ZHANG L, et al. Network pharmacology study on the antibacterial activity of caffeoylquinic acids[J]. Science and Technology of Food Industry, 2021, 42(13): 11−20.
|
[18] |
DAINA A, MICHIELIN O, ZOETE V. Swiss Target Prediction:Updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research, Oxford University Press,2019,47(W1):W357. doi: 10.1093/nar/gkz382
|
[19] |
郭忠会, 覃春萍, 梁洁, 等. 基于UHPLC-Q-TOF MS结合分子网络技术快速分析荷叶中生物碱类成分[J]. 分析测试学报,2023,42(8):893−906. [GUO Z H, QIN C P, LIANG J, et al. Rapid identification of alkaloid components in Nelumbinis folium based on UHPLC-Q-TOF MS combined with molecular network technology[J]. Journal of Instrumental Analysis,2023,42(8):893−906.]
GUO Z H, QIN C P, LIANG J, et al. Rapid identification of alkaloid components in Nelumbinis folium based on UHPLC-Q-TOF MS combined with molecular network technology[J]. Journal of Instrumental Analysis, 2023, 42(8): 893−906.
|
[20] |
SHARMA B R, GAUTAM L N S, ADHIKARI D, et al. A comprehensive review on chemical profiling of Nelumbo nucifera:Potential for drug development:Phytochemical profiling of lotus[J]. Phytotherapy Research,2017,31(1):3−26. doi: 10.1002/ptr.5732
|
[21] |
LIBERTI M V, DAI Z, WARDELL S E, et al. A predictive model for selective targeting of the warburg effect through GAPDH inhibition with a natural product[J]. Cell Metabolism,2017,26(4):648−659. doi: 10.1016/j.cmet.2017.08.017
|
[22] |
VASILEVSKAYA I, O’DWYER P J. Role of Jun and Jun kinase in resistance of cancer cells to therapy[J]. Drug Resistance Updates,2003,6(3):147−156. doi: 10.1016/S1368-7646(03)00043-8
|
[23] |
XIE Y, XU P, LIU K, et al. Hyperuricemia and gout are associated with cancer incidence and mortality:A meta-analysis based on cohort studies[J]. Journal of Cellular Physiology,2019,234(8):14364−14376. doi: 10.1002/jcp.28138
|
[24] |
KUO W T, SHEN L, ZUO L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression[J]. Gastroenterology,2019,157(5):1323−1337. doi: 10.1053/j.gastro.2019.07.058
|
[25] |
段艳芬. 基于代谢组学和网络药理学方法研究清热卡森颗粒治疗肾病综合征的物质基础和作用机制[D]. 武汉:湖北中医药大学, 2022. [DUAN Y F. A metabolomics and network pharmacology-based approach to study the material basis and action mechanism of Qingrekasen Granule for treating nephrotic syndrome[D]. Wuhan:Hubei University of Chinese Medicine, 2022.]
DUAN Y F. A metabolomics and network pharmacology-based approach to study the material basis and action mechanism of Qingrekasen Granule for treating nephrotic syndrome[D]. Wuhan: Hubei University of Chinese Medicine, 2022.
|
[26] |
KASEMBELI M M, KAPAROS E, BHARADWAJ U, et al. Aberrant function of pathogenic STAT3 mutant proteins is linked to altered stability of monomers and homodimers[J]. Blood,2023,141(12):1411−1424. doi: 10.1182/blood.2021015330
|
[27] |
PAN J, SHI M, GUO F, et al. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease[J]. Life Sciences,2021,285:119946. doi: 10.1016/j.lfs.2021.119946
|
[28] |
VOSOOGHI M, AMINI M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies[J]. Expert Opinion on Drug Discovery,2014,9(3):255−267. doi: 10.1517/17460441.2014.883377
|
[29] |
DESIRÉE L R, JAVIER D C, ERNESTO M N, et al. Serum urate is related to subclinical inflammation in asymptomatic hyperuricemia[J]. Rheumatology,2021,60(1):371−379. doi: 10.1093/rheumatology/keaa425
|
[30] |
HUANG J, LIN Z, WANG Y, et al. Wuling san based on network pharmacology and in vivo evidence against hyperuricemia via improving oxidative stress and inhibiting inflammation[J]. Drug Design, Development and Therapy,2023,17:675−690. doi: 10.2147/DDDT.S398625
|
[31] |
CHEN M, MENG L. The double faced role of xanthine oxidoreductase in cancer[J]. Acta Pharmacologica Sinica,2022,43(7):1623−1632. doi: 10.1038/s41401-021-00800-7
|
[32] |
CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiology and Molecular Biology Reviews,2011,75(1):50−83. doi: 10.1128/MMBR.00031-10
|
[33] |
XIN P, XU X, DENG C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. International Immunopharmacology,2020,80:106210. doi: 10.1016/j.intimp.2020.106210
|
[34] |
杨晨曦. 2型糖尿病伴高尿酸血症中医证型分析及降尿酸方作用机制的相关研究[D]. 沈阳:辽宁中医药大学, 2023. [YANG C X. Analysis of TCM syndromes of type 2 diabetes mellitus with hyperuricemia and study on the mechanism of action of uric acid lowering prescription[D]. Shenyang:Liaoning University of Traditional Chinese Medicine, 2023.]
YANG C X. Analysis of TCM syndromes of type 2 diabetes mellitus with hyperuricemia and study on the mechanism of action of uric acid lowering prescription[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2023.
|
[35] |
ZHOU H, MA Z F, LU Y, et al. Elevated serum uric acid, hyperuricemia and dietary patterns among adolescents in mainland China[J]. Journal of Pediatric Endocrinology and Metabolism,2020,33(4):487−493. doi: 10.1515/jpem-2019-0265
|
[36] |
PICHAVARAM P, MANI A M, SINGH N K, et al. Cholesterol crystals promote endothelial cell and monocyte interactions via H2O2-mediated PP2A inhibition, NFκB activation and ICAM1 and VCAM1 expression[J]. Redox Biology,2019,24:101180. doi: 10.1016/j.redox.2019.101180
|
[37] |
CHAI F, PENG H, QIN L, et al. MicroRNA miR-181d-5p regulates the MAPK signaling pathway by targeting mitogen-activated protein kinase 8 (MAPK8) to improve lupus nephritis[J]. Gene,2024,893:147961. doi: 10.1016/j.gene.2023.147961
|
[38] |
CHEN Y, LI C, DUAN S, et al. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Biomedicine & Pharmacotherapy,2019,118:109195.
|
[39] |
MARTINS D S M C, COELHO G B, CAROLINA D P M M, et al. Lychnophora pinaster ethanolic extract and its chemical constituents ameliorate hyperuricemia and related inflammation[J]. Journal of Ethnopharmacology,2019,242:112040. doi: 10.1016/j.jep.2019.112040
|
[40] |
YANG B, XIN M, LIANG S, et al. Naringenin ameliorates hyperuricemia by regulating renal uric acid excretion via the PI3K/AKT signaling pathway and renal inflammation through the NF-κB signaling pathway[J]. Journal of Agricultural and Food Chemistry,2023,71(3):1434−1446. doi: 10.1021/acs.jafc.2c01513
|
[41] |
ZHU L H, XU Y Y, ZHU L, et al. Protective effects of Cyclocarya paliurus on hyperuricemia and urate-induced inflammation[J]. Journal of Functional Foods,2022,94:105130. doi: 10.1016/j.jff.2022.105130
|
[42] |
BAO W, XIA H, LIANG Y, et al. Toll-like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis[J]. Scientific Reports,2016,6(1):22579. doi: 10.1038/srep22579
|
[43] |
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One,2013,8(12):e83922. doi: 10.1371/journal.pone.0083922
|
[44] |
万朋, 申开宇, 徐戚轩, 等. 甲基莲心碱通过阻断ROCK通路抑制非小细胞肺癌细胞的迁移和侵袭[J]. 中国药理学通报,2022,38(4):561−568. [WAN P, SHEN K Y, XU Q X, et al. Effects of neferine on invasion and migration of non-small cell lung cancer H1299 cells via inhibiting ROCK pathway[J]. Chinese Pharmacological Bulletin,2022,38(4):561−568.] doi: 10.12360/CPB202105041
WAN P, SHEN K Y, XU Q X, et al. Effects of neferine on invasion and migration of non-small cell lung cancer H1299 cells via inhibiting ROCK pathway[J]. Chinese Pharmacological Bulletin, 2022, 38(4): 561−568. doi: 10.12360/CPB202105041
|
[45] |
SHEN X, WANG C, LIANG N, et al. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout[J]. Arthritis & Rheumatology,2021,73(9):1738−1748.
|
[46] |
SUN L, NI C X, ZHAO J X, et al. Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia:A review[J]. Critical Reviews in Food Science and Nutrition,2024,64(7):2016−2031. doi: 10.1080/10408398.2022.2119934
|
[47] |
郭颖. 自拟痛风方治疗高尿酸血症湿热蕴结证的网络药理预测及实验探索[D]. 北京:中国中医科学院, 2018. [GUO Y. The network pharmacological prediction and experimental exploration of the treatment of TongFeng decoction on hyperuricemia with Damp-heat accumulation syndrome[D]. Beijing:China Academy of Chinese Medical Sciences, 2018.]
GUO Y. The network pharmacological prediction and experimental exploration of the treatment of TongFeng decoction on hyperuricemia with Damp-heat accumulation syndrome[D]. Beijing: China Academy of Chinese Medical Sciences, 2018.
|
[48] |
FENG S, WU S, XIE F, et al. Natural compounds lower uric acid levels and hyperuricemia:Molecular mechanisms and prospective[J]. Trends in Food Science & Technology,2022,123:87−102.
|
[49] |
王明星. 荷叶碱对高尿酸血症状态下动物肾保护作用及其机制的研究[D]. 南京:南京大学, 2015. [WANG M X. Study on kidney protection of nuciferine and its mechanisms in hyperuricemia of animals[D]. Nanjing:Nanjing University, 2015.]
WANG M X. Study on kidney protection of nuciferine and its mechanisms in hyperuricemia of animals[D]. Nanjing: Nanjing University, 2015.
|
[50] |
阮仕洋, 陈慧, 曾凡丽, 等. 基于网络药理学和分子对接探讨桑枝改善高尿酸血症的作用机制[J]. 食品工业科技,2022,43(19):22−30. [RUAN S Y, CHEN H, ZENG F L, et al. Study on the mechanism of mulberry twig improving hyperuricemia based on network pharmacology and molecular docking[J]. Science and Technology of Food Industry,2022,43(19):22−30.]
RUAN S Y, CHEN H, ZENG F L, et al. Study on the mechanism of mulberry twig improving hyperuricemia based on network pharmacology and molecular docking[J]. Science and Technology of Food Industry, 2022, 43(19): 22−30.
|
[51] |
尉雅洁, 刘明飞, 孙成宏, 等. 基于网络药理学和动物实验探究荆防颗粒对高尿酸血症的治疗作用及机制[J]. 中草药,2023,54(3):808−816. [WEI Y J, LIU M F, SUN C H, et al. Therapeutic effect and mechanism of Jingfang Granules on hyperuricemia based on network pharmacology and animal experiments validation[J]. Chinese Traditional and Herbal Drugs,2023,54(3):808−816.]
WEI Y J, LIU M F, SUN C H, et al. Therapeutic effect and mechanism of Jingfang Granules on hyperuricemia based on network pharmacology and animal experiments validation[J]. Chinese Traditional and Herbal Drugs, 2023, 54(3): 808−816.
|
[52] |
杨钊田. 基于玄府理论研究四神煎治疗痛风性关节炎的作用机制[D]. 北京:中国中医科学院, 2019. [YANG Z T. Study on mechanism of si shen decoction in treating gouty arthritis based on Xuanfu theory[D]. Beijing:China Academy of Chinese Medical Sciences, 2019.]
YANG Z T. Study on mechanism of si shen decoction in treating gouty arthritis based on Xuanfu theory[D]. Beijing: China Academy of Chinese Medical Sciences, 2019.
|
[53] |
谢昊宸, 张博恒, 穆卡然·艾买江, 等. 基于肠道菌群和系统药理学探讨藏药十五味乳鹏丸抗高尿酸血症肾病的作用机制[J]. 中草药,2022,53(19):6068−6082. [XIE H C, ZHANG B H, MUKARAM A, et al. Mechanism of Tibetan medicine Shiwuwei Rupeng pills on hyperuricemia nephropathy based on intestinal flora and systematic pharmacology[J]. Chinese Traditional and Herbal Drugs,2022,53(19):6068−6082.] doi: 10.7501/j.issn.0253-2670.2022.19.013
XIE H C, ZHANG B H, MUKARAM A, et al. Mechanism of Tibetan medicine Shiwuwei Rupeng pills on hyperuricemia nephropathy based on intestinal flora and systematic pharmacology[J]. Chinese Traditional and Herbal Drugs, 2022, 53(19): 6068−6082. doi: 10.7501/j.issn.0253-2670.2022.19.013
|
[54] |
QIAN Y, YIN J, NI J, et al. A network pharmacology method combined with molecular docking verification to explore the therapeutic mechanisms underlying Simiao pill herbal medicine against hyperuricemia[J]. BioMed Research International,2023,2023:1−16.
|
[55] |
CAO L, MA B, YI B, et al. Discovery of natural multitarget xanthine oxidase inhibitors for therapeutic hyperuricemia using virtual screening, network pharmacology and in vitro experimental verification[J]. Chemistry Select,2023,8(30):e202301939.
|
1. |
洪梦杰,景奕文,于白音,张朝玉,石海英,常圣鑫. 基于网络药理学和分子对接探讨葛根素抗炎的关键靶点. 韶关学院学报. 2025(02): 41-46 .
![]() | |
2. |
鲁森,王瑞,高雄,林慧纯,陈忠正,张媛媛,陈旭洁,黄秋颜,李斌,林晓蓉. 基于高分辨质谱和网络药理学探究南昆山毛叶红茶的抗炎机理. 食品工业科技. 2024(02): 30-39 .
![]() | |
3. |
李思蒙,田荣,殷明婧,谷巍. 基于网络药理学和分子对接探讨中药芫花治疗原发性痛经的作用机制. 亚热带植物科学. 2024(01): 31-39 .
![]() | |
4. |
李镁娟,张军,张云数,李乾伟,张娜,刘梦娇,张人平. 网络药理学结合分子对接技术揭示芹菜籽抑制痛风的潜在分子机制. 食品与机械. 2024(03): 44-51 .
![]() | |
5. |
张淼,黄菲,江思思,刘小芬. 闽台“一条根”类青草药次生代谢产物研究进展. 中国民族民间医药. 2023(16): 62-67 .
![]() | |
6. |
殷春燕,董占军,陈江魁. 基于网络药理学和分子对接技术研究花生红衣多酚抗动脉粥样硬化的作用机制. 食品与发酵工业. 2023(20): 242-249 .
![]() |