WANG Yazhi, ZHANG Jianyong, DUAN Cancan. Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 8−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070092.
Citation: WANG Yazhi, ZHANG Jianyong, DUAN Cancan. Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 8−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070092.

Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology

More Information
  • Received Date: July 08, 2020
  • Available Online: January 31, 2021
  • Objective: To explore the mechanism of relieving alcohol and protecting liver of Yigancao herbal tea by network pharmacology and molecular docking technology. Methods: The active components of 9 traditional Chinese medicines in Yigancao herbal teawere obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). The related targets were predicted by Swiss Target Prediction and Target Net databases, while the targets related to liver disease were collected by The Comparative Toxicogenomics Database (CTD), Functional Protein Association Network (STRING) and Uniprot database. The targets of Yigancao herbal tea were screened by drug action target and liver disease target interaction, and the protein interaction network of liver protection target was further constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the targets were analyzed using the Databasefor Annotation, Visualization and Integrated Discovery (DAVID), and the network was constructed and analyzed by Cytoscape software. With the help of Auto Dock software, the key components and important targets were verified by molecular docking. Results: The results showed that 186 active components of Yigancao herbal tea were screened and 298 targets were obtained, including 78 targets related to liver diseases. These targets were mainly involved in Pathways in cancer, Calcium signal pathway, Neuroactive ligand-receptor interaction, Serotonergic synapse, cGMP-PKG signaling pathway and other pathways to protect liver. Conclusion: This study revealled that Yigancao herbal tea could exert the effect of relieving alcohol and protecting liver through the regulation network of multi-components, multi-targets and multi-pathways, which provides a scientific basis for the research and clinical application of Yigancao herbal tea in the treatment of alcoholic liver disease.
  • [1]
    Wang W J, Xiao P, Xu H Q, et al. Growing burden of alcoholic liver disease in China: A review[J]. World Journal of Gastroenterology,2019,25(12):1445−1456. doi: 10.3748/wjg.v25.i12.1445
    [2]
    杨柳, 薄颖异, 于冰莉, 等. 中医药防治酒精性肝病概况及相关机制研究进展[J]. 中成药,2020,42(3):719−726. doi: 10.3969/j.issn.1001-1528.2020.03.032
    [3]
    贵州苗姑娘食品有限责任公司. 一种益肝草植物饮料: CN201510303774.6[P]. 2015-09-23.
    [4]
    BaptisteB, KarineA, PierreD, et al. Network-based approaches in pharmacology[J]. Molecular Informatics,2017,36(10):1−11.
    [5]
    张华敏, 刘思鸿, 高宏杰, 等. 复方中药网络药理学方法研究进展[J]. 中国医院用药评价与分析,2019,19(10):1270−1273, 1276.
    [6]
    Li B J, Rui J Q, Ding X J, et al. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy[J]. Journal of Ethnopharmacology,2019,.233:158−168. doi: 10.1016/j.jep.2018.12.033
    [7]
    Huang P, Ke H W, Qiu Y, et al. Systematically characterizing chemical profile and potential mechanisms of Qingre Lidan Decoction acting on cholelithiasis by integrating UHPLC-QTOF-MS and network target analysis[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019(2):1−19.
    [8]
    唐吉伟, 郑叁, 曹学帅, 等. 基于网络药理学的“蒲公英-夏枯草”药对治疗乳腺癌作用机制研究[J]. 中国医院用药评价与分析,2020,20(1):44−49.
    [9]
    赵光耀, 赵坤, 蒋文雯, 等. 基于网络药理学对蒲公英抑制α-葡萄糖苷酶活性成分及作用机制的研究[J]. 天然产物研究与开发,2020,32(3):403−413, 440.
    [10]
    程书权. 如何合理应用抗炎保肝药物[J]. 肝博士,2018(5):43−44.
    [11]
    Forster S C, Kumar N, Anonye B O, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nature Biotechnology,2019,37(2):186−192. doi: 10.1038/s41587-018-0009-7
    [12]
    Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins[J]. Nature reviews. Molecular Cell Biology,2018,19(5):327−341. doi: 10.1038/nrm.2017.130
    [13]
    梁丽, 毕倩, 董金材, 等. 具有保肝作用的天然药物开发进展[J]. 生物资源,2018,40(2):148−158.
    [14]
    魏芬芬, 王文娟, 贺青华, 等. 枸杞多糖对小鼠酒精性肝损伤的保护作用及机制研究[J]. 药物评价研究,2019,42(5):852−857.
    [15]
    刘馨宇. 蒲公英甾醇对小鼠酒精性和免疫性肝损伤保护作用及机制研究[D]. 吉林: 延边大学, 2018: 13-18.
    [16]
    张海全, 钟晓坤, 黄勤英, 等. 酶法提取苦丁茶熊果酸的工艺优化及其对CCl4致小鼠肝损伤的保护作用[J]. 食品工业科技,2019,40(17):161−166.
    [17]
    Karimi M Y, Fatemi I, Kalantari H, et al. Ellagic acid prevents oxidative stress, inflammation, and histopathological alterations in Acrylamide-Induced hepatotoxicity in Wistar rats[J]. Journal of Dietary Supplements,2019:1−12.
    [18]
    Zhang C, Sheng L, Yang T, et al. Effects of ellagic acid on inflammation and oxidative stress induced by AKT gene transfection in mice with fatty liver disease[J]. China Journal of Chinese Materia Medica,2019,44(9):1869−1875.
    [19]
    Afifi N A, Ibrahim M A, Galal M K. Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats[J]. Canadian Journal of Physiology and Pharmacology,2018,96(6):624−629. doi: 10.1139/cjpp-2017-0651
    [20]
    Zhou Y, Jin H, Wu Y, et al. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism[J]. Toxicol In Vitro,2019,57:226−232. doi: 10.1016/j.tiv.2019.03.008
    [21]
    Guo X P, Lin H K, Liu J J, et al. Quercetin protects hepatocyte from ferroptosis by depressing mitochondria-reticulum interaction through PERK downregulation in alcoholic liver (P06-056-19)[J]. Curr Dev Nutr,2019,3(Suppl 1).
    [22]
    宋鑫华. 甘草香豆素预防和治疗肝癌的作用及机制研究[D]. 北京: 中国农业大学, 2018: 23-32.
    [23]
    Zhang W L, Zhong W, Sun Q, et al. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice[J]. Scientific Reports,2017,7(1):8976. doi: 10.1038/s41598-017-02759-0
    [24]
    Marin V, Poulsen K, Odena G, et al. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients[J]. Journal of Hepatology: The Journal of the European Association for the Study of the Liver,2017,67(5):1018−1025.
    [25]
    Kumamoto T, Togo S, Ishibe A, et al. Role of nitric oxide synthesized by nitric oxide synthase 2 in liver regeneration[J]. Liver International,2008,28(6):865−877. doi: 10.1111/j.1478-3231.2008.01712.x
    [26]
    Khristi V, Ratri A, Ghosh S, et al. Liver transcriptome data of Esr1 knockout male rats reveals altered expression of genes involved in carbohydrate and lipid metabolism[J]. Data in Brief,2019,22:771−780. doi: 10.1016/j.dib.2018.12.089
    [27]
    Khristi V, Ratri A, Ghosh S, et al. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats[J]. Molecular and Cellular Endocrinology,2019,490:47−56. doi: 10.1016/j.mce.2019.04.005
    [28]
    Nuria OV, Simona H, Sabineu V, et al. Calcium signaling in liver injury and regeneration[J]. Front Med (Lausanne),2018,5:192.
    [29]
    夏婷, 张瑾, 姚佳慧, 等. 氧化应激在酒精性肝病中作用机制的研究进展[J]. 中国药理学通报,2017,33(10):1353−1356. doi: 10.3969/j.issn.1001-1978.2017.10.006
    [30]
    Eunüs S A, Nikolai P. Calcium signaling as a therapeutic target for liver steatosis[J]. Trends in Endocrinology & Metabolism,2019,30(4):270−281.
    [31]
    刘素彤, 赵文霞. 非酒精性脂肪性肝病相关肝细胞癌的发病机制[J]. 临床肝胆病杂志,2019,35(7):1621−1625. doi: 10.3969/j.issn.1001-5256.2019.07.043
    [32]
    Wojcikowski J, Daniel W A. The role of the nervous system in the regulation of liver cytochrome p450[J]. Current drug metabolism,2011,12(2):124−138. doi: 10.2174/138920011795016908
  • Related Articles

    [1]LÜ Haokun, YANG Tenghui, WU Qici, PAN Yutian, XUE Yu. Exploring the Effect of Glucosamine Hydrochloride on Liver Cancer Using Zebrafish Liver Cancer Model[J]. Science and Technology of Food Industry, 2024, 45(20): 332-340. DOI: 10.13386/j.issn1002-0306.2023110259
    [2]SUN Yi, XIA Hongzhi, NIU Kun, LI Jiangbo, ZHU Yulei, LI Guyue, YIN Zhongyan. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320-327. DOI: 10.13386/j.issn1002-0306.2023030026
    [3]LIU Juncai, GE Zhen, JIANG Xiao, CUI Baojin, ZHANG Ping, SUN Jian'an, MAO Xiangzhao. Effects of Royal Jelly Peptide on Motor Ability and Gene Expression in Zebrafish Model of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2023, 44(21): 395-401. DOI: 10.13386/j.issn1002-0306.2023010021
    [4]JIN Lingtai, ZHANG Ming, FANG Shuangqi, XU Qiang. Study on Lowering Uric Acid Effect and Component Analysis of Drug Food Homologous Compound Based on Zebrafish Model[J]. Science and Technology of Food Industry, 2023, 44(19): 410-416. DOI: 10.13386/j.issn1002-0306.2022110251
    [5]WANG Shengnan, FU Xiaoting, XU Jiachao, GAO Xin. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356-365. DOI: 10.13386/j.issn1002-0306.2020120007
    [6]ZHANG Yingyu, PUBU Duoji, LU Cong, WANG Fengzhong. Screening of Uric Acid-lowering Food and Medicinal Materials Based on Inhibiting Xanthine Oxidase Activity and Zebrafish Hyperuricemia Model[J]. Science and Technology of Food Industry, 2021, 42(12): 334-339. DOI: 10.13386/j.issn1002-0306.2020080220
    [7]NI Li-ying, ZOU Ya-xue, FU Xiao-ting, DUAN De-lin, XU Jia-chao, GAO Xin. Anti-inflammatory Mechanism of Phenolic Compounds from Sargassum fusiforme by LPS-induced Zebrafish Embryo Model[J]. Science and Technology of Food Industry, 2019, 40(21): 279-285. DOI: 10.13386/j.issn1002-0306.2019.21.046
    [8]ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048
    [9]HOU Cai-ping, HAN Li-wen, ZHANG Feng, CHU Jie, ZHANG Xuan-ming, WANG Rong-chun, CHEN Xi-qiang, WANG Dai-jie, LIU Ke-chun, TIAN Qing-ping, HE Qiu-xia. Study on the antioxidant activity of isochlorogenic acid A[J]. Science and Technology of Food Industry, 2017, (12): 72-76. DOI: 10.13386/j.issn1002-0306.2017.12.013
    [10]LI Quan-guo, CHU Jie, CHEN Xi-qiang, WANG Jun-gao, WU Xiao-min, LIU Ke-chun. Study on the antioxidant activity evaluation of Jujube ( Ziziphus) leaf flavonoids in vitro and zebrafish ( Danio rerio) with fluorescent skin[J]. Science and Technology of Food Industry, 2014, (05): 58-61. DOI: 10.13386/j.issn1002-0306.2014.05.071
  • Cited by

    Periodical cited type(6)

    1. 周兰荠,刘天启,吕佳瑶,张续梦,王鹏,施琳. 食药同源滇黄精水提物保护酒精性肝损伤的机制. 陕西师范大学学报(自然科学版). 2024(05): 82-96 .
    2. 韩丽,饶智,曹林,向茗,刘福,朱建平. 部分药食同源食物防治酒精性肝损伤研究进展. 中国食物与营养. 2023(02): 57-62 .
    3. 章新友,张亚明,刘梦玲,李秀云,徐华康,刘莉萍. 虚拟筛选技术在中药研究中的应用. 中国新药杂志. 2022(17): 1676-1683 .
    4. 张鸿志,李璐,刘永明,潘明. 解酒制品研究进展. 酿酒科技. 2021(09): 65-73 .
    5. 詹娜,刘兴海,唐芳莹,张建永. 苦参汤治疗隐孢子虫病的潜在靶标及协同作用机制研究. 中国血吸虫病防治杂志. 2021(05): 483-495 .
    6. 李阳,赵天倚,步洪石,王淑敏. 基于网络药理学分析葛根山楂人参颗粒解酒保肝的作用机制. 特产研究. 2021(06): 31-40 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1038) PDF downloads (85) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return