ZHAO Zhiheng, BI Jinghui, YE Shijie, et al. Mechanism of Astragalus-Ligustrum lucidum in the Treatment of Immunodeficiency Diseases Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(3): 374−383. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060024.
Citation: ZHAO Zhiheng, BI Jinghui, YE Shijie, et al. Mechanism of Astragalus-Ligustrum lucidum in the Treatment of Immunodeficiency Diseases Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(3): 374−383. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060024.

Mechanism of Astragalus-Ligustrum lucidum in the Treatment of Immunodeficiency Diseases Based on Network Pharmacology and Molecular Docking

More Information
  • Received Date: June 02, 2021
  • Available Online: December 07, 2021
  • The network pharmacology and molecular docking technology were applied to explore the mechanism of trratment Immunodeficiency Diseases (IDD) of Astragalus and Ligustrum lucidum. Traditional Chinese Medicine Systems Pharmacology (TCMSP), Swiss Tagert Prediction, Genecards and other online databases were used to select the active compounds and potential targets of Astragalus and Ligustrum lucidum, and build the compound-target-disease network and protein-protein interaction network. The enrichment of gene ontology (GO) function analysis by DAVID and ClueGo and the pathway enrichment analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) were carried out. Finally, molecular docking studies were carried out to verify the binding of core components and targets. A total of 31 active components and 81 targets of Astragalus and Ligustrum lucidum in the treatment of IDD were obtained by network analysis. The results of GO function enrichment analysis showed that the treatment of Astragalus-Ligustrum lucidum may involved 152 biological processes such as the positive regulation of MAP kinase activity and 23 immune system processes such as α-β T cell activation. The results of KEGG pathway showed that it were 91 KEGG pathways involved in cancer pathways and prostate cancer. The results of molecular docking showed that kaempferol had good binding activity to MAPK1 and other proteins. The molecular mechanism of Astragalus and Ligustrum lucidum in the treatment of IDD indicated the synergistic features of multi-component, multi-target, and multi-pathway, which provided reference for the development of dietary supplements.
  • [1]
    何庭艳, 赵晓东, 杨军. 原发性免疫缺陷病分类更新(2019版)解读[J]. 中华儿科杂志,2020,58(8):624−627. [HE T Y, ZHAO X D, YANG J. Interpretation of the classification of human inborn errors of immunity (2019 edition)[J]. Chinese Journal of Pediatrics,2020,58(8):624−627. doi: 10.3760/cma.j.cn112140-20200218-00099
    [2]
    SHAPIRO R S, WASSERMAN R L, BONAGURA V, et al. Emerging paradigm of primary immunodeficiency disease: Individualizing immunoglobulin dose and delivery to enhance outcomes[J]. Journal of Clinical Immunology,2017,37(2):190−196. doi: 10.1007/s10875-014-9990-x
    [3]
    BLANCO E, IZOTOVA N, BOOTH C, et al. Immune reconstitution after gene therapy approaches in patients with X-Linked severe combined immunodeficiency disease[J]. Frontiers in Immunology,2020,11:608653. doi: 10.3389/fimmu.2020.608653
    [4]
    骆紫燕, 卿德刚, 孙宇, 等. 管花肉苁蓉苯乙醇苷的巨噬细胞激活作用及其与当归、黄芪在调节免疫方面的协同作用[J]. 食品工业科技,2020,41(21):311−316. [LUO Z Y, QING D G, SUN Y, et al. Activation of macrophage of phenylethanol glycosides extracted from cistanche tubulosa and its synergisticeffect with Angelica sinensis and Astragalus propinquus in regulating immunity[J]. Science and Technology of Food Industry,2020,41(21):311−316.
    [5]
    高赛. 贞芪扶正胶囊全过程质量控制研究[D]. 贵阳: 贵州师范大学, 2020.

    GAO S. Study on quality control of Zhenqi Fuzheng capsules in the whole process[D]. Guiyang: Guizhou Normal University, 2020.
    [6]
    张金松. HIV/AIDS患者线粒体DNA多态性及贞芪扶正颗粒对患者免疫重建影响的研究[D]. 广州: 南方医科大学, 2017.

    ZHANG J S. Thestudy on mitochondrial DNA polymorphism of HIV/AIDS patients and effect of Zhenqi Fuzheng granule on immune reconstitution of patients[D]. Guangzhou: Southern Medical University, 2017
    [7]
    邓昕, 周淑娟, 王丽, 等. 贞芪扶正胶囊联合常规西医对艾滋病患者疗效及对其T细胞免疫的影响[J]. 中国临床医生杂志,2020,48(12):1453−1456. [DENG X, ZHOU S J, WANG L, et al. Effect of Zhenqi Fuzheng capsule combined with conventional western medicine on AIDS patients and T cell immunity[J]. Chinese Clinical Doctor,2020,48(12):1453−1456. doi: 10.3969/j.issn.2095-8552.2020.12.021
    [8]
    FU J, WANG Z H, HUANG L F, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi)[J]. Phytother Res,2014,28:1275−1283. doi: 10.1002/ptr.5188
    [9]
    LIU J, LIU Z Y, WANG L L, et al. Bioactivity-guided isolation of immunomodulatory compounds from the fruits of Ligustrum lucidum[J]. Journal of Ethnopharmacology,2021,274:114079. doi: 10.1016/j.jep.2021.114079
    [10]
    LUO T T, LU Y, YAN S K, et al. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective[J]. Chinese Journal of Integrative Medicine,2020,26(1):72−80. doi: 10.1007/s11655-019-3064-0
    [11]
    DAN W C, LIU J L, GUO X Y, et al. Study on medication rules of traditional Chinese medicine against antineoplastic drug-induced cardiotoxicity based on network pharmacology and data mining[J]. Evidence-based Complementary and Alternative Medicine: ECAM,2020,2020:7498525.
    [12]
    RU J L, LI P, WANG J A, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics,2014,6:13. doi: 10.1186/1758-2946-6-13
    [13]
    DAINA A, MICHIELIN O, ZOETE V. Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research,2019,47:W357−W364. doi: 10.1093/nar/gkz382
    [14]
    BURLEY S K, BERMAN H M, BHIKADIYA C, et al. Protein data bank: The single global archive for 3D macromolecular structure data[J]. Nucleic Acids Research, 2019, 47(D1).
    [15]
    李钦, 胡继宏, 高博, 等. 黄芪多糖在免疫调节方面的最新研究进展[J]. 中国实验方剂学杂志,2017,23(2):199−206. [LI Q, HU J H, GAO B, et al. Advances on immunoregulation effect of Astragalus polysaccharides[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(2):199−206.
    [16]
    马园园, 王静, 罗琼, 等. 黄芪总皂苷药理作用研究进展[J]. 辽宁中医药大学学报,2020,22(7):153−157. [MA Y Y, WANG J, LUO Q, et al. Pharmacological effects and research progress of total Astragalus saponins[J]. Journal of Liaoning University of Traditional Chinese Medicine,2020,22(7):153−157.
    [17]
    QIAO Y, CAO Y, YU K, et al. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity[J]. International Journal of Pharmaceutics,2020:589.
    [18]
    田瑞雪, 孙耀宗, 姚有昊, 等. 槲皮素对免疫低下小鼠免疫功能的影响[J]. 中国现代医药杂志,2019,21(9):13−16. [TIAN R X, SUN Y Z, YAO Y H, et al. Effect of quercetin on immune function in immunocompromised mice[J]. Modern Medicine Journal of China,2019,21(9):13−16. doi: 10.3969/j.issn.1672-9463.2019.09.004
    [19]
    JIA Z, CHEN A, WANG C, et al. Amelioration effects of kaempferol on immune response following chronic intermittent cold-stress[J]. Research in Veterinary Science,2019,125:390−396. doi: 10.1016/j.rvsc.2019.08.012
    [20]
    杨佳. 山奈酚对小鼠淋巴细胞活力与焦亡的影响[D]. 雅安: 四川农业大学, 2019.

    YANG J. Effects of kaempferol on lymphocytes viability and pyroptosis in mice[D]. Yaan: Sichuan Agricultural University, 2019
    [21]
    陈伟, 马小琴, 范文玺, 等. 红景天主要成分对小鼠免疫细胞的促增殖转化作用[J]. 中国现代应用药学,2016,33(1):38−42. [CHEN W, MA X Q, FAN W X, et al. Major efficacy component of Rhodiola stimulate proliferation and transformation on mouse immune cells[J]. Chinese Journal of Modern Applied Pharmacy,2016,33(1):38−42.
    [22]
    NAVITA S, MISHRA K P, LILLY G. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors[J]. Archives of Virology,2016,161(12):3331−3344. doi: 10.1007/s00705-016-3034-1
    [23]
    季宇彬, 汲晨锋. 黄芪多糖对肿瘤模型小鼠红细胞免疫功能的影响[J]. 现代食品科技,2013,29(9):2042−2046. [JI Y B, JI C F. Effect of Astragalus polysaccharide on immune function of erythrocyte in tumor model mice[J]. Modern Food Science and Technology,2013,29(9):2042−2046.
    [24]
    MOKDAD-BZEOUICH I, MUSTAPHA N, SASSI A, et al. Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity[J]. Cell Stress and Chaperones,2016,21(5):773−781. doi: 10.1007/s12192-016-0702-8
    [25]
    迟戈夫. 异鼠李素抗金黄色葡萄球菌α溶血素和分选酶A作用研究[D]. 长春: 吉林大学, 2016.

    CHI G F. The inhibitory effect of isorhamnetin on Staphylococcus aureus α-hemolysin and Sortase A[D]. Changchun: Jilin University, 2016.
    [26]
    MILAD A, ZAHRAA, TAHEREH F, et al. Autophagy regulation using luteolin: New insight into its anti-tumor activity.[J]. Cancer Cell International,2020,20(1):537−546. doi: 10.1186/s12935-020-01634-9
    [27]
    黄志勇, 孙凤军, 袁慊, 等. 木犀草素降低大肠埃希菌对呼吸道上皮细胞感染的作用机制研究[J]. 中国医院药学杂志,2020,40(7):781−785. [HUANG Z Y, SUN F J, YUAN Q, et al. Effect of luteolin on reducing the infection of Escherichia coli in respiratory epithelial cells[J]. Chinese Journal of Hospital Pharmacy,2020,40(7):781−785.
    [28]
    TOHID G, ZOHREH B, AREZOO H, et al. Targeting STAT3 in cancer and autoimmune diseases.[J]. European Journal of Pharmacology,2020,878:173107. doi: 10.1016/j.ejphar.2020.173107
    [29]
    ZOU S, TONG Q, LIU B, et al. Targeting STAT3 in cancer immunotherapy[J]. Molecular Cancer,2020,19(1):145−164. doi: 10.1186/s12943-020-01258-7
    [30]
    姚安琪, 陈可可, 贺湘玲, 等. 疑难病研究: STAT3基因突变致免疫失调综合征[J]. 中国当代儿科杂志,2021,23(4):397−401. [YAO A Q, CHEN K K, HE X L, et al. Immune dysregulation syndrome caused by STAT3 gene mutation: A complicated case study[J]. Chinese Journal of Contemporary Pediatrics,2021,23(4):397−401. doi: 10.7499/j.issn.1008-8830.2012167
    [31]
    张佳鑫, 蒋一凡, 雷昕诺, 等. Src和Abl酪氨酸蛋白激酶家族参与病原微生物感染的研究进展[J]. 微生物学通报,2019,46(10):2781−2786. [ZHANG J X, JIANG Y F, LEI X N, et al. Research advances in Src and Abl tyrosine protein kinase family involved in pathogenic microbial infection[J]. Microbiology China,2019,46(10):2781−2786.
    [32]
    DONK L E H, ATES L S, SPEK J, et al. Separate signaling events control TCR downregulation and T cell activation in primary human T cells[J]. Immunity, Inflammation and Disease,2021,9(1):223−238. doi: 10.1002/iid3.383
    [33]
    JIA A, WANG Y X, WANG Y F, et al. The kinase AKT1 potentiates the suppressive functions of myeloid-derived suppressor cells in inflammation and cancer[J]. Cellular & Molecular Immunology,2021,18(4):1074−1076.
    [34]
    DWIVEDI V P, DEBAPRIYA B, VINOD Y, et al. The phytochemical bergenin enhances T Helper 1 responses and anti-mycobacterial immunity by activating theMAP kinase pathway in macrophages[J]. Frontiers in Cellular and Infection Microbiology,2017,7:149−158. doi: 10.3389/fcimb.2017.00149
    [35]
    周晓霞, 邓洁, 张维, 等. MiR-600通过抑制HIF-1α信号通路降低宫颈癌细胞的增殖能力[J]. 南方医科大学学报,2021,41(2):210−215. [ZHOU X X, DENG J, ZHANG W, et al. MiR-600 suppresses HeLa cell proliferation by inhibiting hypoxia-inducible factor-1α signaling pathway[J]. Journal of Southern Medical University,2021,41(2):210−215. doi: 10.12122/j.issn.1673-4254.2021.02.07
    [36]
    邓哲. 薯蓣丸抑制HIF-1α改善肝癌微环境缺氧与免疫逃逸的机制研究[D]. 长沙: 湖南中医药大学, 2020.

    DENG Z. Study on the mechanism of Shuyuwan decoction suppressing HIF-1α to improve the microenvironment hypoxia and immune escape of liver cancer[D]. Changsha: Hunan University of Chinese Medicine, 2020.
  • Related Articles

    [1]LÜ Haokun, YANG Tenghui, WU Qici, PAN Yutian, XUE Yu. Exploring the Effect of Glucosamine Hydrochloride on Liver Cancer Using Zebrafish Liver Cancer Model[J]. Science and Technology of Food Industry, 2024, 45(20): 332-340. DOI: 10.13386/j.issn1002-0306.2023110259
    [2]SUN Yi, XIA Hongzhi, NIU Kun, LI Jiangbo, ZHU Yulei, LI Guyue, YIN Zhongyan. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320-327. DOI: 10.13386/j.issn1002-0306.2023030026
    [3]LIU Juncai, GE Zhen, JIANG Xiao, CUI Baojin, ZHANG Ping, SUN Jian'an, MAO Xiangzhao. Effects of Royal Jelly Peptide on Motor Ability and Gene Expression in Zebrafish Model of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2023, 44(21): 395-401. DOI: 10.13386/j.issn1002-0306.2023010021
    [4]JIN Lingtai, ZHANG Ming, FANG Shuangqi, XU Qiang. Study on Lowering Uric Acid Effect and Component Analysis of Drug Food Homologous Compound Based on Zebrafish Model[J]. Science and Technology of Food Industry, 2023, 44(19): 410-416. DOI: 10.13386/j.issn1002-0306.2022110251
    [5]WANG Shengnan, FU Xiaoting, XU Jiachao, GAO Xin. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356-365. DOI: 10.13386/j.issn1002-0306.2020120007
    [6]ZHANG Yingyu, PUBU Duoji, LU Cong, WANG Fengzhong. Screening of Uric Acid-lowering Food and Medicinal Materials Based on Inhibiting Xanthine Oxidase Activity and Zebrafish Hyperuricemia Model[J]. Science and Technology of Food Industry, 2021, 42(12): 334-339. DOI: 10.13386/j.issn1002-0306.2020080220
    [7]NI Li-ying, ZOU Ya-xue, FU Xiao-ting, DUAN De-lin, XU Jia-chao, GAO Xin. Anti-inflammatory Mechanism of Phenolic Compounds from Sargassum fusiforme by LPS-induced Zebrafish Embryo Model[J]. Science and Technology of Food Industry, 2019, 40(21): 279-285. DOI: 10.13386/j.issn1002-0306.2019.21.046
    [8]ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048
    [9]HOU Cai-ping, HAN Li-wen, ZHANG Feng, CHU Jie, ZHANG Xuan-ming, WANG Rong-chun, CHEN Xi-qiang, WANG Dai-jie, LIU Ke-chun, TIAN Qing-ping, HE Qiu-xia. Study on the antioxidant activity of isochlorogenic acid A[J]. Science and Technology of Food Industry, 2017, (12): 72-76. DOI: 10.13386/j.issn1002-0306.2017.12.013
    [10]LI Quan-guo, CHU Jie, CHEN Xi-qiang, WANG Jun-gao, WU Xiao-min, LIU Ke-chun. Study on the antioxidant activity evaluation of Jujube ( Ziziphus) leaf flavonoids in vitro and zebrafish ( Danio rerio) with fluorescent skin[J]. Science and Technology of Food Industry, 2014, (05): 58-61. DOI: 10.13386/j.issn1002-0306.2014.05.071
  • Cited by

    Periodical cited type(18)

    1. 姜振旭,王朝兴,王宇亮,赵宏,沈宇,孙诗晴,马永哲,宋明明,张宇. 基于GEO数据库结合网络药理学和分子对接技术探究玉竹抗抑郁作用机制. 食品工业科技. 2025(01): 359-366 . 本站查看
    2. 韩昕,李莎莎,陈曦,毛阿娟,李凡,王卫锋,李芳. 基于CiteSpace和VOSviewer对女贞子的研究现状与热点分析. 特产研究. 2024(03): 47-55+59 .
    3. 岳珠珠,石双慧,张婧秋,魏晓彤,姜明瑞,王梦琳,王志成,王慧楠,阮意丹,王英姿. 基于网络药理学和实验验证探究黄精增强免疫功能的作用机制. 世界中医药. 2024(12): 1730-1736 .
    4. 清怡,邹旭辉,汪凡,李洁莲,招云春. 基于NF-κB/NLRP3炎症小体探讨黄芪甲苷Ⅳ对系统性红斑狼疮模型小鼠免疫功能的影响. 广州中医药大学学报. 2024(09): 2433-2441 .
    5. 王永伏. 柴胡桂枝汤联合贞芪扶正胶囊治疗晚期乳腺癌. 吉林中医药. 2024(10): 1199-1203 .
    6. 杨春睿,钮晓红,金磊. 益阴抗甲方联合甲巯咪唑治疗Graves病合并甲状腺功能亢进疗效研究. 陕西中医. 2024(12): 1630-1633 .
    7. 袁鑫怡,曾淑欣,杨润,李羿. 基于网络药理学与分子对接的蒲公英抗乳腺癌的机制研究. 天津中医药. 2023(01): 110-116 .
    8. 邓婷,刘吉祥. 固本益肠片联合美沙拉嗪肠溶片治疗溃疡性结肠炎的临床效果及对免疫功能和血清sRAGE、Vaspin的影响. 临床医学研究与实践. 2023(06): 115-118 .
    9. 郝亚洁,马阳阳. 正元胶囊联合阿替利珠单抗治疗晚期非小细胞肺癌的效果. 河南医学研究. 2023(05): 908-912 .
    10. 刘茜,冯效梅,刘长庚,李海军,杨潇远,任静,张颖. 特女贞苷对高糖诱导人视网膜微血管内皮细胞损伤的抑制作用及其机制. 中华实验眼科杂志. 2023(04): 312-320 .
    11. 颜涛,谷佳,朱能,石雅宁,张婵娟,李洪芳,覃丽. 基于网络药理学和实验验证雷公藤红素治疗肾癌的作用及机制. 中国医药导报. 2023(14): 4-10 .
    12. 李惠,冯婷,赵燕燕. 补肾活血中药联合来曲唑治疗排卵障碍性不孕患者对激素影响的观察. 医学理论与实践. 2023(12): 2062-2064 .
    13. 课净璇,李永秀,李杰,李密,马艳莉,张志清. 乳清分离蛋白掩蔽花椒苦味机制研究. 食品工业科技. 2023(19): 10-16 . 本站查看
    14. 侯鸿燕,刘品莉. 自拟益元生血汤加减联合小剂量激素治疗原发免疫性血小板减少症的临床研究. 中国实用医刊. 2022(13): 120-123 .
    15. 杨涛,张振鹏,曹琳琳,李军. 加味稳心汤治疗气虚血瘀型急性心肌梗死后心力衰竭的疗效及对外周血心房钠尿肽、脑钠肽和利钾尿肽的影响. 河北中医. 2022(09): 1434-1438 .
    16. 陈伟鸿,吴琪琪,黄桔,龙文清,蒋艳平,周越菡. 穿心莲内酯对人神经胶质瘤U251细胞的抑制作用及机制研究. 食品工业科技. 2022(23): 360-370 . 本站查看
    17. 单永琳,郑斌,卞伟玉,田雯艳,刘国华,袁春晓,张志前. 芪参还五胶囊联合经颅磁刺激治疗脑卒中后抑郁的临床研究. 中西医结合心脑血管病杂志. 2022(22): 4204-4207 .
    18. 邵秋香,史亮亮,李晓华,曹雅莉,肖彬. 非麻醉下自动痔疮套扎术联合四味痔血汤、九华膏治疗湿热下注型Ⅰ、Ⅱ期出血性内痔临床研究. 河北中医. 2022(12): 2032-2035+2072 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (396) PDF downloads (43) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return