SUN Yajia, SUN Jiuxu, HOU Sihan, et al. Mechanism of Aralia echinocaulis in Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(8): 11−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100014.
Citation: SUN Yajia, SUN Jiuxu, HOU Sihan, et al. Mechanism of Aralia echinocaulis in Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(8): 11−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100014.

Mechanism of Aralia echinocaulis in Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking

More Information
  • Received Date: October 13, 2021
  • Available Online: February 20, 2022
  • Objective: Mechanism of Aralia echinocaulis in treatment of osteoporosis based on network pharmacology and molecular docking was discussed. Methods: The chemical components of the Aralia echinocaulis by liquid-phase mass spectrometry were analyzed, Stitch was used to predict the biological macromolecules related to the composition, and the existing targets were collected on DrugBank. GeneCards and other databases were used to obtain targets related to osteoporosis, and the intersection targets between the two were screened out. Gene ontology (GO) enrichment and Genes and Genomes (KEGG) analysis were performed on the intersection targets, and molecular docking was used to verify the predicted core targets and related compounds. Results: After liquid-phase mass spectrometry analysis and database prediction, 159 active ingredients and 525 target points were obtained, and 150 target points were obtained by intersecting with 1636 osteoporosis-related targets. 10 key targets including IL6, AKT1 and MAPK1 were screened out through the protein-protein interaction (PPI) network. GO analysis revealed 578 biological functions, involving gene regulation, cell proliferation and apoptosis, inflammation and so on. KEGG analysis showed 127 pathways, PI3K-Akt signaling pathway, MAPK signaling pathway, and HIF-1 signaling pathway might be key pathways. Diseases such as hepatitis B, tuberculosis, rheumatoid arthritis, and cancer might also indirectly lead to osteoporosis. Molecular docking showed that most components have good docking ability with related targets, indicating that the prediction results have a certain degree of reliability. Conclusion: Multiple effective components of Aralia echinocaulis could prevent and treat osteoporosis by promoting the survival, proliferation and differentiation of osteoblasts and inhibiting bone resorption of osteoclasts. The PI3K-Akt signaling pathway, MAPK signaling pathway and HIF-1 signaling pathway might play an important role in this process, which would provide a reference for the further study of its molecular mechanism and the development of corresponding dietary supplements.
  • [1]
    李延红, 龚福太, 石耀武, 等. 原发性骨质疏松症中西医结合治疗现状及研究进展[J]. 中国骨质疏松杂志,2017,23(5):690−694. [LI Y H, GONG F T, SHI Y W, et al. Current status and research progress on the traditional Chinese and western medicine combined treatment for primary osteoporosis[J]. Chinese Journal of Osteoporosis,2017,23(5):690−694. doi: 10.3969/j.issn.1006-7108.2017.05.027
    [2]
    李冲, 吕伟华, 王亭亭, 等. 1088例医务人员骨质疏松的流行病学研究[J]. 中国骨质疏松杂志,2015,21(10):1217−1220. [LI C, LÜ W H, WANG T T, et al. The study of prevalence of osteoporosis in 1088 medical workers[J]. Chinese Journal of Osteoporosis,2015,21(10):1217−1220. doi: 10.3969/j.issn.1006-7108.2015.10.013
    [3]
    张昌攀, 陈凯, 陈海鹏, 等. 中西医药物治疗原发性骨质疏松症研究进展[J]. 中医药临床杂志,2018,30(1):171−175. [ZHANG C P, CHEN K, CHEN H P. Research progress of traditional chinese and western medicine in treating primary osteoporosis[J]. Clinical Journal of Traditional Chinese Medicine,2018,30(1):171−175.
    [4]
    方志先, 赵晖, 赵敬华. 土家族药物志[M]. 北京: 中国医药科技出版社, 2007: 830−835.

    FANF Z X, ZHAO H, ZHAO J H. Tujia medicine history [M]. Beijing: China Medical Science and Technology Press, 2007: 830−835.
    [5]
    李美娟, 李娜, 校彦赟, 等. 刺老苞的营养成分测定[J]. 贵州农业科学,2014,42(9):65−67. [LI M J, LI N, XIAO Y Y, et al. Determination of nutritional compositions in Aralia chinensis[J]. Guizhou Agricultural Sciences,2014,42(9):65−67. doi: 10.3969/j.issn.1001-3601.2014.09.018
    [6]
    王萌萌, 依香叫, 崔箭, 等. 刺老苞总皂苷对抗大鼠泼尼松性骨质疏松的作用研究[J]. 中国中医基础医学杂志,2016,22(4):477−479. [WANG M M, YI X J, CUI J, et al. Study on the effect of total saponins of Aralia echinocaulis on rat osteoporosis induced by prednisone[J]. Journal of Basic Chinese Medicine,2016,22(4):477−479.
    [7]
    裴凌鹏, 王萌萌, 依香叫, 等. 刺老苞根皮对糖皮质激素诱导的大鼠骨质疏松症的干预影响[J]. 中国骨质疏松杂志,2016,22(7):872−876. [PEI L P, WANG M M, YI X J, et al. Effect of Aralia echinocaulis extract on glucocorticoid-induced osteoporosis in rats[J]. Chinese Journal of Osteoporosis,2016,22(7):872−876. doi: 10.3969/j.issn.1006-7108.2016.07.017
    [8]
    魏晴, 梁珊珊, 姜珊珊, 等. 良附丸治疗胃溃疡的网络药理学作用机制研究[J]. 中国药房,2021,32(9):1063−1069. [WEI Q, LIANG S S, JIANG S S, et al. Study on network pharmacology mechanism of Liangfu Pills in the treatment of gastric ulcer[J]. China Pharmacy,2021,32(9):1063−1069. doi: 10.6039/j.issn.1001-0408.2021.09.07
    [9]
    依香叫, 李金诚, 王松月, 等. 刺老苞根皮含药血清对原代成骨细胞Wnt/β-catenin信号通路的影响[J]. 中国中药杂志,2017,42(14):2749−2753. [YI X J, LI J C, WANG S Y, et al. Effect of Aralia echinocaulis containing serum on Wnt/β-catenin signaling pathway of primary osteoblast[J]. China Journal of Chinese Materia Medica,2017,42(14):2749−2753.
    [10]
    燕梦云, 依香叫, 李金诚, 等. 刺老苞根皮水提物对成骨细胞TGF-β/BMPs信号通路的影响[J]. 药物评价研究,2017,40(11):1541−1544. [YAN M Y, YI X J, LI J C, et al. Effect of aqueous extract from Araliae Echinocaulis Radicis et Cortex containing serum on TGF-β/BMPs signaling pathway in primary osteoblasts[J]. Drug Evaluation Research,2017,40(11):1541−1544.
    [11]
    李金诚. 龙牙楤木皂苷Ⅳ对原代破骨、成骨细胞的影响及成骨分化机制的研究[D]. 北京, 中央民族大学, 2019.

    LI J C. The effects of tarasaponin Ⅳ on the formation and bone resorption of primary osteoclasts and differentiation and mineralization of primary osteoblasts [D]. Beijing: Minzu University of China, 2019.
    [12]
    徐森楠, 庄莉, 翟园园, 等. 基于网络药理学研究二至丸防治骨质疏松症的物质基础与作用机制[J]. 中国药学杂志,2018,53(22):1913−1920. [XU S N, ZHUANG L, ZHAI Y Y, et al. Material basis and mechanism of Erzhi Pill for preventing osteoporosis based on network pharmacology[J]. Chinese Pharmaceutical Journal,2018,53(22):1913−1920.
    [13]
    于超平, 姚建晗, 高原, 等. 白细胞介素-6与骨质疏松相关研究进展[J]. 新乡医学院学报,2017,34(11):1040−1043. [YU C P, YAO J H, GAO Y, et al. Research progress of interleukin-6 related to osteoporosis[J]. Journal of Xinxiang Medical University,2017,34(11):1040−1043.
    [14]
    文娱, 张金娟, 陈雪梅, 等. 淫羊藿苷对骨质疏松模型小鼠骨组织中IL-6表达的影响[J]. 贵州医药,2010,34(4):781−783. [WEN Y, ZHANG J J, CHEN X M, et al. Effects of Icariin of examining the expression level of interleukin-6 in mice models of experimental osteoporosis[J]. Guizhou Medical Journal,2010,34(4):781−783.
    [15]
    Mukherjee A, Rotwein P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development[J]. Molecular and Cellular Biology,2012,32(2):490−500. doi: 10.1128/MCB.06361-11
    [16]
    周亚男. 2型糖尿病骨质疏松大鼠骨组织PI3K、Akt1、Akt2、NF-κB表达[D]. 石家庄: 河北医科大学, 2012.

    ZHOU Y N. The expressions of PI3K, Akt1, Akt2, NF-κB in bone of type 2 diabetic osteoporosis rats [D]. Shijiazhuang: Hebei Medical University, 2012.
    [17]
    KOU P L, HSU Y L, CHANG C H, et al. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells[J]. The Journal of Pharmacology and Experimental Therapeutics,2005,314(3):1290−1299. doi: 10.1124/jpet.105.085092
    [18]
    GRASSER W A, PAN L C, THOMPSON D D, et al. Common mechanism for the estrogen agonist and antagonist activities of droloxifene[J]. Journal of Cellular Biochemistry,1997,65(2):157−171.
    [19]
    JIA F, SUN R F, LI J, et al. Interactions of Pri-miRNA-34b/c and TP53 polymorphisms on the risk of osteoporosis[J]. Genet Test Mol Biomarkers,2016,20(7):398−401. doi: 10.1089/gtmb.2015.0282
    [20]
    谢兴文, 李建国, 黄晋, 等. 血管内皮生长因子防治骨质疏松的研究进展[J]. 中国骨质疏松杂志,2019,25(7):1030−1033. [XIE X W, LI J G, HUANG J, et al. Progress on research of vascular endothelial growth factor in the prevention and treatment of osteoporosis[J]. Chinese Journal of Osteoporosis,2019,25(7):1030−1033. doi: 10.3969/j.issn.1006-7108.2019.07.030
    [21]
    李天. STAT3对MC3T3-E1成骨分化影响的体外研究[D]. 沈阳: 中国医科大学, 2020.

    LI T. Effect of STAT3 on osteogenic differentiation of MC3T3-E1 in vitro [D]. Shenyang: China Medical University, 2020.
    [22]
    Lim R Z L, Li L, Yong E L, et al. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation[J]. Biochimica et Biophysica Acta-General Subjects,2018,1862(7):1680−1692. doi: 10.1016/j.bbagen.2018.04.016
    [23]
    姚娜, 李鹏程, 耿春梅, 等. TNF-α 介导绝经后骨质疏松症发病机制的研究进展[J]. 中国骨质疏松杂志,2021,27(3):454−458. [YAO N, LI P C, GENG C M, et al. Advances in the pathogenesis of postmenopausal osteoporosis mediated by TNF-alpha[J]. Chinese Journal of Osteoporosis,2021,27(3):454−458. doi: 10.3969/j.issn.1006-7108.2021.03.029
    [24]
    MCCARTY M F. Anabolic effects of insulin on bone suggest a role for chromium picolinate in preservation of bone density[J]. Medical Hypotheses,1995,45(3):241−246. doi: 10.1016/0306-9877(95)90112-4
    [25]
    SHEVDE N K, BENDIXEN A C, DIENGER K M, et al. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression[J]. Proceedings of the National Academy of Sciences of the USA,2000,97(14):7829−7834. doi: 10.1073/pnas.130200197
    [26]
    王珂, 张捷, 许溟宇, 等. EGFR信号转导机制在医源性骨质疏松中的分子发病机制及临床应用的研究[D]. 长春: 吉林大学, 2009.

    WANG K, ZHANG J, XU M Y, et al. Molecular pathogenesis and clinical application of EGFR signal transduction in iatrogenic osteoporosis[D]. Changchun: Jilin University, 2009.
    [27]
    JIN X, SUN J, YU B, et al. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation[J]. Nutrition Research,2017,42:20−30. doi: 10.1016/j.nutres.2017.04.009
    [28]
    XI J C, ZANG H Y, GUO L X, et al. The PI3K/AKT cell signaling pathway is involved in regulation of osteoproosis[J]. Journal of receptor and signal transduction research,2015,35(6):640−645. doi: 10.3109/10799893.2015.1041647
    [29]
    WU L, GUO Q, YANG J, et al. Tumor necrosis factor alpha promotes osteoclast formation via PI3K/Akt pathway-medi-ated Blimpl expression upregulation[J]. Journal of Cellular Biochemistry,2017,118(6):1308−1315. doi: 10.1002/jcb.25672
    [30]
    ANDREW M, STEELMAN L S, CHAPPELL W H, et a1. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: How mutations can result in therapy resistance and how to overcome resistance[J]. Oncotarget,2012,3(10):1068. doi: 10.18632/oncotarget.659
    [31]
    张玲莉, 雷乐, 吴伟. MAPK信号通路在骨髓间充质干细胞向成骨细胞分化中的作用[J]. 中华骨质疏松和骨矿盐疾病杂志,2021,14(01):75−81. [ZHANG L L, LEI L, WU W. Effect of MAPKs signaling pathway on bone marrow mesenchymal stem cells differentiation to osteoblasts[J]. Chinese Journal of Osteoporosis and Bone Mineral Research,2021,14(01):75−81. doi: 10.3969/j.issn.1674-2591.2021.01.012
    [32]
    钟航, 曹参, 杨静, 等. HIF-1信号通路与绝经后骨质疏松的关系研究[J]. 四川大学学报(医学版),2017,48(6):862−868. [ZHONG H, CAO C, YANG J, et al. Research on relationship of HIF-1 signaling pathway and postmenstrual osteoporosis[J]. Journal of Sichuan University (Medical Sciences),2017,48(6):862−868.
    [33]
    韩一凡, 徐小元. 乙型肝炎患者骨质疏松的发生机制及临床防治[J]. 临床肝胆病杂志,2020,36(7):1615−1618. [HAN Y F, XU X Y. Pathogenesis and clinical prevention and treatment of osteoporosis in patients with hepatitis B[J]. Journal of Clinical Hepatology,2020,36(7):1615−1618. doi: 10.3969/j.issn.1001-5256.2020.07.036
    [34]
    李月翠, 周晶, 李成行, 等. 肺结核患者骨代谢特点及骨质疏松发生风险分析[J]. 中国卫生检验杂志,2019,29(1):67−69. [LI Y C, ZHOU J, LI C X, et al. Characteristics of bone metabolism and risk analysis of osteoporosis in patients with pulmonary tuberculosis[J]. Chinese Journal of Health Laboratory Technology,2019,29(1):67−69.
    [35]
    杨群政, 章先锋, 陈英, 等. 类风湿关节炎与骨质疏松症的关系研究[J]. 中医正骨,2021,33(2):26−29. [YANG Q Z, ZHANG X F, CHEN Y, et al. A clinical study on the relationships between rheumatoid arthritis and osteoporosis[J]. The Journal of Traditional Chinese Orthopedics and Traumatology,2021,33(2):26−29. doi: 10.3969/j.issn.1001-6015.2021.02.005
    [36]
    丛洪飞. 熊果酸对酒精性骨质疏松大鼠骨形成、骨矿化及肠道菌群的影响[D]. 青岛: 青岛大学, 2017.

    CONG H F. The influence of ursolic acid on bone formation, bone mineral and gut microbes in alcohol-induced osteoporosis rat[D]. Qingdao: Qingdao University, 2017.
    [37]
    李洁, 孙雅楠, 解光越, 等. 熊果酸通过BMP-2/Smad4 /Wnt/β-catenin信号通路介导对去卵巢大鼠骨量流失的保护作用[J]. 中国骨质疏松杂志,2020,26(12):1810−1814. [LI J, SUN Y N, XIE G Y, et al. Mediates the protective effect of ursolic acid on bone mass loss in ovariectomized rats through BMP-2/Smad4 /Wnt /β-catenin signal pathway[J]. Chinese Journal of Osteoporosis,2020,26(12):1810−1814. doi: 10.3969/j.issn.1006-7108.2020.12.017
    [38]
    王鹏, 夏晓枫, 左斌, 等. 槲皮素对大鼠废用性骨质疏松的预防作用及ERK1/2-MAPK 信号通路的影响[J]. 解放军医药杂志,2020,32(11):6−10. [WANG P, XIA X F, ZUO B, et al. Preventive effect of quercetin on disused osteoporosis in rats and its effect on ERK1/2-MAPK signaling pathway[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army,2020,32(11):6−10. doi: 10.3969/j.issn.2095-140X.2020.11.002
    [39]
    刘军, 刘峰, 闫楚奇, 等. 槲皮素对双膦酸盐治疗老年性骨质疏松患者骨代谢指标改善效果的分析[J]. 中国骨质疏松杂志,2020,26(7):1044−1048. [LIU J, LIU F, YAN C Q, et al. Effect of quercetin supplementation on bone metabolism in elderly osteoporosis patients treated with bisphosphonates[J]. Chinese Journal of Osteoporosis,2020,26(7):1044−1048.
    [40]
    张晓梦. 鹧鸪茶多酚提取纯化及防治去势大鼠骨质疏松的研究[D]. 太原: 山西省中医药研究院, 2014.

    ZHANG X M. Extraction and purification of the polyphenols in Mallotus oblongifolius (Miq. ) Muell. -Arg and studied the effect for osteoporosis prevention and treatment in ovariectomized rat[D]. Taiyuan: Shanxi Academy of Traditional Chinese Medicine, 2014.
    [41]
    YANG S P, SUN C X, CHEN C. Nobiletin improves bone loss due to natural aging by regulating RORα[J]. Progress in Biochemistry and Biophysics,2020,47(8):1−9.
    [42]
    石其福. 咖啡酸对破骨细胞形成及分化的影响[D]. 石家庄: 河北医科大学, 2010.

    SHI Q F. The effect of caffeic acid on formation and differentiation of osteoclast[D]. Shijiazhuang: Hebei Medical University, 2010.
  • Related Articles

    [1]LÜ Haokun, YANG Tenghui, WU Qici, PAN Yutian, XUE Yu. Exploring the Effect of Glucosamine Hydrochloride on Liver Cancer Using Zebrafish Liver Cancer Model[J]. Science and Technology of Food Industry, 2024, 45(20): 332-340. DOI: 10.13386/j.issn1002-0306.2023110259
    [2]SUN Yi, XIA Hongzhi, NIU Kun, LI Jiangbo, ZHU Yulei, LI Guyue, YIN Zhongyan. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320-327. DOI: 10.13386/j.issn1002-0306.2023030026
    [3]LIU Juncai, GE Zhen, JIANG Xiao, CUI Baojin, ZHANG Ping, SUN Jian'an, MAO Xiangzhao. Effects of Royal Jelly Peptide on Motor Ability and Gene Expression in Zebrafish Model of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2023, 44(21): 395-401. DOI: 10.13386/j.issn1002-0306.2023010021
    [4]JIN Lingtai, ZHANG Ming, FANG Shuangqi, XU Qiang. Study on Lowering Uric Acid Effect and Component Analysis of Drug Food Homologous Compound Based on Zebrafish Model[J]. Science and Technology of Food Industry, 2023, 44(19): 410-416. DOI: 10.13386/j.issn1002-0306.2022110251
    [5]WANG Shengnan, FU Xiaoting, XU Jiachao, GAO Xin. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356-365. DOI: 10.13386/j.issn1002-0306.2020120007
    [6]ZHANG Yingyu, PUBU Duoji, LU Cong, WANG Fengzhong. Screening of Uric Acid-lowering Food and Medicinal Materials Based on Inhibiting Xanthine Oxidase Activity and Zebrafish Hyperuricemia Model[J]. Science and Technology of Food Industry, 2021, 42(12): 334-339. DOI: 10.13386/j.issn1002-0306.2020080220
    [7]NI Li-ying, ZOU Ya-xue, FU Xiao-ting, DUAN De-lin, XU Jia-chao, GAO Xin. Anti-inflammatory Mechanism of Phenolic Compounds from Sargassum fusiforme by LPS-induced Zebrafish Embryo Model[J]. Science and Technology of Food Industry, 2019, 40(21): 279-285. DOI: 10.13386/j.issn1002-0306.2019.21.046
    [8]ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048
    [9]HOU Cai-ping, HAN Li-wen, ZHANG Feng, CHU Jie, ZHANG Xuan-ming, WANG Rong-chun, CHEN Xi-qiang, WANG Dai-jie, LIU Ke-chun, TIAN Qing-ping, HE Qiu-xia. Study on the antioxidant activity of isochlorogenic acid A[J]. Science and Technology of Food Industry, 2017, (12): 72-76. DOI: 10.13386/j.issn1002-0306.2017.12.013
    [10]LI Quan-guo, CHU Jie, CHEN Xi-qiang, WANG Jun-gao, WU Xiao-min, LIU Ke-chun. Study on the antioxidant activity evaluation of Jujube ( Ziziphus) leaf flavonoids in vitro and zebrafish ( Danio rerio) with fluorescent skin[J]. Science and Technology of Food Industry, 2014, (05): 58-61. DOI: 10.13386/j.issn1002-0306.2014.05.071
  • Cited by

    Periodical cited type(6)

    1. 周兰荠,刘天启,吕佳瑶,张续梦,王鹏,施琳. 食药同源滇黄精水提物保护酒精性肝损伤的机制. 陕西师范大学学报(自然科学版). 2024(05): 82-96 .
    2. 韩丽,饶智,曹林,向茗,刘福,朱建平. 部分药食同源食物防治酒精性肝损伤研究进展. 中国食物与营养. 2023(02): 57-62 .
    3. 章新友,张亚明,刘梦玲,李秀云,徐华康,刘莉萍. 虚拟筛选技术在中药研究中的应用. 中国新药杂志. 2022(17): 1676-1683 .
    4. 张鸿志,李璐,刘永明,潘明. 解酒制品研究进展. 酿酒科技. 2021(09): 65-73 .
    5. 詹娜,刘兴海,唐芳莹,张建永. 苦参汤治疗隐孢子虫病的潜在靶标及协同作用机制研究. 中国血吸虫病防治杂志. 2021(05): 483-495 .
    6. 李阳,赵天倚,步洪石,王淑敏. 基于网络药理学分析葛根山楂人参颗粒解酒保肝的作用机制. 特产研究. 2021(06): 31-40 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (271) PDF downloads (39) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return