Citation: | LIU Ziqi, LIU Zhengyu, GUO Yinhong, et al. Design, Expression and Evaluation of Bacteriostatic Activity of Hybrid Antimicrobial Peptide NK-LPd[J]. Science and Technology of Food Industry, 2023, 44(18): 173−180. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100277. |
[1] |
SINHA R, SHUKLA P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives[J]. Protein and Peptide Letters,2019,26(2):79−87. doi: 10.2174/0929866525666181026160852
|
[2] |
GIANNAMARIA A, GABRIELE C. Antimicrobial peptides (AMPs): A patent review (2015-2020)[J]. Expert Opinion on Therapeutic Patents,2020,30(12):931−947. doi: 10.1080/13543776.2020.1851679
|
[3] |
LEI J, SUN L C, HUANG S Y, et al. The antimicrobial peptides and their potential clinical applications[J]. American Journal of Translational Research,2019,11(7):3919−3931.
|
[4] |
RAJU S V, SARKAR P, KUMAR P, et al. Piscidin, fish antimicrobial peptide: Structure, classification, properties, mechanism, gene regulation and therapeutical importance[J]. International Journal of Peptide Research and Therapeutics,2021,27:91−107. doi: 10.1007/s10989-020-10068-w
|
[5] |
ZHU R, WU Y S, LIU X X, et al. Membrane disruptive antimicrobial potential of NK-lysin from yellow catfish (Pelteobagrus fulvidraco)[J]. Fish and Shellfish Immunology,2019,97:571−580.
|
[6] |
ZHANG M, LI M F, SUN L. NKLP27: A teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection[J]. PLoS One,2014,9(9):e106543. doi: 10.1371/journal.pone.0106543
|
[7] |
刘明辉, 张尚志, 马艳, 等. 抗菌肽及其分子改造研究进展[J]. 安徽农业科学,2016,44(16):147−150. [LIU M H, ZHANG S Z, MA Y, et al. Research progress of antibacterial peptides and their molecular modification[J]. Journal of Anhui Agricultural Sciences,2016,44(16):147−150.
LIU M. H. , ZHANG S. Z. , MA Y. , et al. Research progress of antibacterial peptides and their molecular modification[J]. Journal of Anhui Agricultural Sciences, 2016, 44(16), 147-150.
|
[8] |
SHAN Z G, YANG Y P, GUAN N, et al. NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits bacterial growth and enhances resistance against Vibrio parahaemolyticus infection inYesso scallop, Patinopecten yessoensis[J]. Fish and Shellfish Immunology,2020,106:431−440. doi: 10.1016/j.fsi.2020.08.020
|
[9] |
ZHENG W, ZHANG C, LI Y, et al. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations[J]. Cell Rep Methods,2021,26,1(3):100014.
|
[10] |
王莲哲, 江宏浩, 唐宜飞, 等. 新型抗菌肽 Temporin-SHf 在毕赤酵母中的表达及诱导条件优化[J]. 食品与发酵工业,2020,46(14):98−102. [WANG L Z, JIANG H H, TANG Y F, et al. Expression of novel antibacterial peptide Temporin-SHf in Pichia pastoris and optimization of induction conditions[J]. Food and Fermentation Industries,2020,46(14):98−102.
WANG L Z, JIANG H H, TANG Y F, et al. Expression of novel antibacterial peptide Temporin-SHf in Pichia pastoris and optimization of induction conditions[J]. Food and Fermentation Industries, 2020, 46(14): 98-102.
|
[11] |
何妍之. 液相色谱技术在饲料中抗菌肽分离纯化和含量测定的应用研究[J]. 中国饲料,2021(22):63−68. [HE Y Z. Application of liquid chromatographic techniques for the separation and purification of antimicrobial peptides in feed and determination of their content[J]. China Feed,2021(22):63−68.
HE Y. Z. Application of liquid chromatographic techniques for the separation and purification of antimicrobial peptides in feed and determination of their content[J]. China Feed, 2021(22): 63-68.
|
[12] |
谭才邓, 朱美娟, 杜淑霞, 等. 抑菌试验中抑菌圈法的比较研究[J]. 食品工业,2016,37(11):122−125. [TAN C D, ZHU M J, DU S X, et al. Comparative study of the inhibition circle method in the inhibition test[J]. The Food Industry,2016,37(11):122−125.
TAN C D, ZHU M J, DU S X. , et al. Comparative study of the inhibition circle method in the inhibition test[J]. The Food Industry, 2016, 37(11): 122-125.
|
[13] |
SEO M D, WON H S, KIM J H, et al. Antimicrobial peptides for therapeutic applications: A review[J]. Molecules,2012,17(10):12276−12286. doi: 10.3390/molecules171012276
|
[14] |
RAJESHWARI S, PRATYOOSH S. Antimicrobial Peptides: recent insights on biotechnological interventions and future perspectives[J]. Protein & Peptide Letters,2019,26(2):79−87.
|
[15] |
GUANGSHUN W, XIA L, ZHE W. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Research, 2016: D1087−D1093.
|
[16] |
DATTA S, ROY A. Antimicrobial peptides as potential therapeutic agents: a review[J]. International Journal of Peptide Research and Therapeutics,2021,27:555−577. doi: 10.1007/s10989-020-10110-x
|
[17] |
AL TALL Y, ABUALHAIJAA A, ALSAGGAR M, et al. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27[J]. Infect Drug Resist,2019,30(12):1035−1045.
|
[18] |
TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications[J]. Nano Today,2021,4(44):101229.
|
[19] |
武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志,2013,33(9):94−100. [WU R J, ZHANG R J. The progress of hybrid peptides on design and biological activity[J]. China Biotechnology,2013,33(9):94−100.
WU R. J. , ZHANG R. J. , The progress of hybrid peptides on design and biological activity[J]. China Biotechnology, 2013, 33(9): 94-100.
|
[20] |
GHOSH C, HALDAR D J. Membrane-active small molecules: Designs inspired by antimicrobial peptides[J]. Chem Med Chem,2015,10(10):1606−1624. doi: 10.1002/cmdc.201500299
|
[21] |
孙长峰, 仲伟霞, 王洪法, 等. 抗菌肽作用机制及改造策略研究进展[J]. 中国病原微生物杂志,2013,8(7):659−663. [SUN C F, ZHONG W X, WANG H F, et al. Research progress on the mechanism of action and modification strategy of antimicrobial peptides[J]. Journal of Pathogen Biology,2013,8(7):659−663.
SUN C F, ZHONG W X, WANG H F, et al. Research progress on the mechanism of action and modification strategy of antimicrobial peptides[J]. Journal of Pathogen Biology, 2013, 8(7): 659-663.
|
[22] |
CHEN R, MAO Y, WANG J, et al. Molecular mechanisms of an antimicrobial peptide piscidin (Lc-pis) in a parasitic protozoan, Cryptocaryon irritans[J]. BMC Genomics,2018,19(1):192.
|
[23] |
HUANG Y, ZHENG Q, NIU J, et al. NK-lysin from Oreochromis niloticus improves antimicrobial defence against bacterial pathogens[J]. Fish Shellfish Immunol,2018,72:259−265. doi: 10.1016/j.fsi.2017.11.002
|
[24] |
于健, Sarra Setrerrahmane, 徐寒梅. 连接肽在融合蛋白设计中的选择及应用[J]. 药物生物技术,2016,23(3):260−263. [YU J, SETRERRAHMANE S, XU H M. Selection and application of linker peptides in fusion protein design[J]. Chinese Journal of Pharmaceutical Biotechnology,2016,23(3):260−263.
YU J, SETRERRAHMANE S, XU H M. Selection and application of linker peptides in fusion protein design[J]. Chinese Journal of Pharmaceutical Biotechnology, 2016, 23(3): 260-263.
|
[25] |
李剑芳, 王春娟, 邬敏辰. 连接肽的设计及在融合蛋白中的应用[J]. 食品与生物技术学报,2016,34(11):1121−1127. [LI J F, WANG C J, WU M C. Design of linker peptides and its application in fusion protein[J]. Journal of Food science and Biotechnology,2016,34(11):1121−1127.
LI J F, WANG C J, WU M C. Design of linker peptides and its application in fusion protein[J]. Journal of Food science and Biotechnology, 2016, 34(11), 1121-1127.
|
[26] |
陈香君, 李黎, 何树梅, 等. 新型LL-37杂合肽对乳腺癌MCF-7细胞的抗肿瘤活性的研究[J]. 中国肿瘤生物治疗杂志,2020,27(6):609−614. [CHEN X J, LI L, HE S M, et al. Antitumor activity of a novel LL-37 hybrid peptide against breast cancer MCF-7 cells[J]. Chinese Journal of Cancer Biotherapy,2020,27(6):609−614.
CHEN X J, LI L, HE S M. ZHANG M. Antitumor activity of a novel LL-37 hybrid peptide against breast cancer MCF-7 cells[J]. Chinese Journal of Cancer Biotherapy, 2020, 27(6): 609-614.
|
[27] |
TONK M, VALDÉS, J J, CABEZAS-CRUZ A. et al. Potent activity of hybrid arthropod antimicrobial peptides linked by glycine spacers[J]. International Journal of Molecular Sciences,2021,22(16):8919. doi: 10.3390/ijms22168919
|
[28] |
杨平, 袁奕豪, 杨晓莉, 等. 抗菌肽高效表达及生产优化研究进展[J]. 生物技术通报,2016,32(3):24−30. [YANG P, YUAN Y H, YANG X L, et al. Research progress of efficient expression and optimization of production of antibacterial peptide[J]. Biotechnology Bulletin,2016,32(3):24−30.
YANG P, YUAN Y H, YANG X L, et al. Research progress of efficient expression and optimization of production of antibacterial peptide[J]. Biotechnology Bulletin, 2016, 32(3): 24-30.
|
[29] |
薛剑峰. 对虾素CHP3和CHP5的原核与真核重组表达及性质研究[D]. 济南: 山东大学, 2005.
XUE Jianfeng. Recombinant expression and characterization of CHP3 andCHP5, two kinds of antimicrobial peptides from Chinese shrimp (Fenneropenaeus chinensis) [D]. Jinan: Shandong University, 2005.
|
[30] |
CHEN R Y, CHEN J, LIU Z M, et al. Barbel steed (Hemibarbus labeo) NK-lysin protects against Aeromonas hydrophila infection via immunomodulatory activity[J]. Developmental and Comparative Immunology,2021,122:104114. doi: 10.1016/j.dci.2021.104114
|
1. |
尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
![]() | |
2. |
李改莲,韩琭丛,王广红,彭钰航,金听祥. 胡萝卜热泵干燥特性及动力学模型分析. 包装工程. 2024(01): 10-18 .
![]() | |
3. |
徐柳风,王学成,易兵,刘振峰,伍振峰,杨明. 中药材保质增效干燥预处理技术的研究现状、问题及对策. 中国医药工业杂志. 2024(04): 463-474 .
![]() | |
4. |
尹燕,李霞,李永才,王毅,冯炜弘,牛慧婷,李爱兵,刘娜娜. 微波-热风联合干燥方法对兰州百合品质的影响. 食品安全质量检测学报. 2024(10): 304-312 .
![]() | |
5. |
颜月玲,李芷瑶,文有青,于瑶,王海霞. 不同贮藏温度下鲜百合关键质量属性研究及保质期预测. 食品安全质量检测学报. 2024(15): 83-92 .
![]() | |
6. |
王栋,赵一凡,邓志宁,孙浩媛,王勇,袁越锦. 烫漂预处理对苹果干燥过程中微观结构及质构品质的影响. 食品科学. 2024(22): 207-218 .
![]() | |
7. |
王莹,吴立国,孙丽萍,周宏举,周桓宇. 基于Weibull函数的平贝母热风干燥特性. 农机化研究. 2022(05): 249-254 .
![]() | |
8. |
金听祥,王广红,彭钰航,马瑜聪,张盼,曹泷. 不同预处理方式对胡萝卜热泵干燥品质的影响. 食品与发酵工业. 2022(07): 173-178 .
![]() | |
9. |
刘鹤,焦俊华,田友,刘佳敖,王燕令,吴学红. 马铃薯片热风干燥特性及收缩动力学模型. 食品工业科技. 2022(11): 58-64 .
![]() |