QIN Xue, FU Shiqian, YANG Xinyan, et al. Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449−455. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100136.
Citation: QIN Xue, FU Shiqian, YANG Xinyan, et al. Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449−455. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100136.

Application of Recombinase Polymerase Amplification in Detection of Foodborne Pathogen

More Information
  • Received Date: October 19, 2020
  • Available Online: August 21, 2021
  • Food safety is a major concern for human. Various detection methods for foodborne pathogenic bacteria have become the focus of studies nowadays. Although polymerase chain reaction (PCR), as the most wildly used detection methods for pathogen, has overcome the shortcomings of time-consuming traditional method, the need for accurate temperature control greatly limits its application in field testing. Recombinase polymerase amplification (RPA), as a new isothermal amplification method, has developed rapidly in recent ten years. This method has broken up the barrier of PCR, getting rid of thermal cycle and expensive instruments, which is more suitable for insufficient resources on-site detection. In this manuscript, the mechanism of RPA and the probe design method are provided. Besides, the application of RPA in detecting foodborne pathogenic bacteria is reviewed. The hot topics of RPA development and the prospect of RPA technology development in the future are summarized.
  • [1]
    周辉. 我国食品安全法律制度探析——评《食品安全法律控制研究》[J]. 中国酿造,2019,38(8):239. [Zhou H. Chinese food safety legal system analysis and evaluation of food safety legal control research[J]. China Brewing,2019,38(8):239.
    [2]
    Renner L D, Zan J, Hu L I, et al. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform[J]. Applied Environmental Microbiology,2017,83(4):e02449−16.
    [3]

    [4]

    [5]

    [6]
    Tack D, Ray L, Griffin P, et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U. S. sites, 2016-2019[J]. MMWR. Morbidity Mortality Weekly Report,2020,69(17):509−514. doi: 10.15585/mmwr.mm6917a1
    [7]
    Mansfield L P, Forsythe S J J F M. The detection of Salmonella serovars from animal feed and raw chicken using a combined immunomagnetic separation and ELISA method[J]. Food Microbiology,2001,18(4):361−366. doi: 10.1006/fmic.2001.0416
    [8]
    李宏, 付冠艳, 付淑君, 等. 胶体金免疫层析技术在食源性致病菌快速检测中的应用[J]. 食品与机械,2013,29(3):261−264. [Li H, Fu G Y, Fu S J, et al. Application of colloidal gold immunochromatography in rapid detection of foodborne pathogens[J]. Food & Machinery,2013,29(3):261−264. doi: 10.3969/j.issn.1003-5788.2013.03.064
    [9]
    Zhao Y, Zeng D, Yan C, et al. Rapid and accurate detection of Escherichia coli O157: H7 in beef using microfluidic wax-printed paper-based ELISA[J]. The Analyst,2020,145(8):3106−3115. doi: 10.1039/D0AN00224K
    [10]
    Ting L, Kun Y. Application of isothermal amplification technology for pathogen detection in parasitic and other diseases[J]. Chinese Journal of Schistosomiasis Control,2018,30(2):232−236.
    [11]
    Piepenburg O, Williams C H, Stemple D L, et al. DNA detection using recombination proteins[J]. PLoS Biology,2006,4(7):1115−1121.
    [12]
    Li J, Macdonald J, Von Stetten F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst,2018,144(1):31−67.
    [13]
    Crannell Z A, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat[J]. PLoS One,2014:e112146.
    [14]
    Deng H, Gao Z J a C A. Bioanalytical applications of isothermal nucleic acid amplification techniques[J]. Analytica Chimica Acta,2015,853:30−45. doi: 10.1016/j.aca.2014.09.037
    [15]
    Zhan Z, Liu J, Yan L, et al. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification[J]. Journal of Pharmaceutical Biomedical Analysis,2019,169:181−187. doi: 10.1016/j.jpba.2019.03.016
    [16]
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):E63. doi: 10.1093/nar/28.12.e63
    [17]
    Wachiralurpan S, Sriyapai T, Areekit S, et al. Development of a rapid screening test for Listeria monocytogenes in raw chicken meat using loop-mediated isothermal amplification (LAMP) and lateral flow dipstick (LFD)[J]. Food Analytical Methods,2017,10:3763−3772. doi: 10.1007/s12161-017-0949-4
    [18]
    Fykse E M, Skogan G, Davies W, et al. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification[J]. Applied Environmental Microbiology,2007,73(5):1457. doi: 10.1128/AEM.01635-06
    [19]
    梁炜, 尼秀媚, 雷质文, 等. 霍乱弧菌SDA-琼脂糖凝胶电泳检测技术研究[J]. 食品安全质量检测学报,2011,2(3):47−51. [Liang W, Ni X M, Lei Z W, et al. Study on detection of Vibrio cholerae by SDA-agarose gel electrophoresis[J]. Journal of Food Safety and Quality,2011,2(3):47−51.
    [20]
    Teng J, Ye Y, Yao L, et al. Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus[J]. Microchimica Acta,2017,184:3477−3485. doi: 10.1007/s00604-017-2383-0
    [21]
    王建广, 雷质文, 石琰璟, 等. 单核细胞增生李斯特氏菌依赖解旋酶DNA恒温扩增检测方法的建立[J]. 中国预防兽医学报,2011(2):130−132. [Wang J G, Lei Z W, Shi Y J, et al. Establishment of the detection method of Listeria monocytogenes by DNA isothermal amplification based on helicase[J]. Chinese Journal of Preventive Veterinary Medicine,2011(2):130−132. doi: 10.3969/j.issn.1008-0589.2011.02.12
    [22]
    Hu J, Huang R, Sun Y, et al. Sensitive and rapid visual detection of Salmonella typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks[J]. Journal of Microbiological Methods,2019,158:25−32. doi: 10.1016/j.mimet.2019.01.018
    [23]
    Jiali, Joannemacdonald, Stetten F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst,2019:144.
    [24]
    Fuller S, Savory E, Weisberg A, et al. Isothermal amplification and lateral-flow assay for detecting crown-gall-causing Agrobacterium spp.[J]. Phytopathology,2017,107(9):1062−1068. doi: 10.1094/PHYTO-04-17-0144-R
    [25]
    Martorell S, Palanca S, Maquieira Á, et al. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene[J]. Analytical Biochemistry,2018,544:49−56. doi: 10.1016/j.ab.2017.12.013
    [26]
    兰海鸥, 柯义强, 马咸莹, 等. 重组酶聚合酶等温扩增技术在食品安全检测领域的应用[J]. 食品与发酵工业,2019,45(14):233−238. [Lan H O, Ke Y Q, Ma X Y, et al. Application of recombinase polymerase amplification in food safety detection field[J]. Food and Fermentation Industry,2019,45(14):233−238.
    [27]
    RPA assay design[EB/OL].https: //www.twistdx.co.uk/en/support/rpa-assay-design-2 (accessed Oct 4th, 2018).
    [28]
    Wang J C, Liu L B, Han Q A, et al. An exo probe-based recombinase polymerase amplification assay for the rapid detection of porcine parvovirus[J]. Journal of Virological Methods,2017,248:145−147. doi: 10.1016/j.jviromet.2017.06.011
    [29]
    Xia X, Yu Y, Weidmann M, et al. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay[J]. PLoS One,2014,9(8):e104667−e104667. doi: 10.1371/journal.pone.0104667
    [30]
    王金凤, 刘立兵, 耿云云, 等. 单核细胞增生李斯特氏菌实时荧光RPA检测方法的建立及应用[J]. 现代食品科技,2018,34(8):213−218, 98. [Wang J F, Liu L B, Geng Y Y, et al. Establishment and application of real-time fluorescence RPA detection method for Listeria monocytogenes[J]. Modern Food Science and Technology,2018,34(8):213−218, 98.
    [31]
    Liu S, Geng Y, Liu L, et al. Development of an isothermal amplification-based assay for the rapid detection of Cronobacter spp.[J]. Journal of Dairy Science,2018,101(6):4914−4922. doi: 10.3168/jds.2017-13931
    [32]
    Geng Y, Liu G, Liu L, et al. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of Campylobacter jejuni in food samples[J]. Journal of Microbiological Methods,2019,157:31−36. doi: 10.1016/j.mimet.2018.12.017
    [33]
    Lobato I M, Osullivan C K J T I a C. Recombinase polymerase amplification: Basics, applications and recent advances[J]. Trends in Analytical Chemistry,2018,98:19−35. doi: 10.1016/j.trac.2017.10.015
    [34]
    Liu H, Zang Y, Du X, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria[J]. Journal of Dairy Science,2017,100(9):7016−7025. doi: 10.3168/jds.2017-12566
    [35]
    Xu Y, Wei Y, Cheng N, et al. Nucleic acid biosensor synthesis of an all-in-one universal blocking linker recombinase polymerase amplification with a peptide nucleic acid-based lateral flow device for ultrasensitive detection of food pathogens[J]. Analytical Chemistry,2018,90(1):708−715. doi: 10.1021/acs.analchem.7b01912
    [36]
    高建欣, 藏雨轩, 杜欣军, 等. 重组酶聚合酶恒温扩增结合乳胶微球试纸条快速检测金黄色葡萄球菌[J]. 食品研究与开发,2019,40(1):177−181. [Gao J X, Zang Y X, Du X J, et al. Rapid detection of Staphylococcus aureus by recombinase polymerase amplification combined with latex microsphere strip[J]. Food Research and Development,2019,40(1):177−181.
    [37]
    Hu J, Wang Y, Su H, et al. Rapid analysis of Escherichia coli O157: H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes[J]. Molecular Cellular Probes,2020,50:101501. doi: 10.1016/j.mcp.2019.101501
    [38]
    Wang L, Zhao P, Si X, et al. Rapid and specific detection of Listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer-dimers[J]. Frontiers in Microbiology,2020:10.
    [39]
    Kunze A, Dilcher M, Abd El Wahed A, et al. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria[J]. Analytical Chemistry,2016,88(1):898−905. doi: 10.1021/acs.analchem.5b03540
    [40]
    Jonas B, CatharinaK, Verena K M, et al. Succinylated jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays[J]. Analytical Bioanalytical Chemistry,2019,411(10):1943−1955. doi: 10.1007/s00216-019-01594-8
    [41]
    Del Río J, Yehia Adly N, Acero-Sánchez J, et al. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification[J]. Biosensors Bioelectronics,2014,54:674−678. doi: 10.1016/j.bios.2013.11.035
    [42]
    Nakano M, Kalsi S, Morgan H J B, et al. Fast and sensitive isothermal DNA assay using microbead dielectrophoresis for detection of anti-microbial resistance genes[J]. Biosensors Bioelectronics,2018,117:583−589. doi: 10.1016/j.bios.2018.06.063
    [43]
    Toldrà A, Furones M, O'sullivan C, et al. Detection of isothermally amplified ostreid herpesvirus 1 DNA in Pacific oyster (Crassostrea gigas) using a miniaturised electrochemical biosensor[J]. Talanta,2020,207:120308. doi: 10.1016/j.talanta.2019.120308
    [44]
    Schuler F, Schwemmer F, Trotter M, et al. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA[J]. Lab on a Chip,2015,15(13):2759−66. doi: 10.1039/C5LC00291E
    [45]
    Tsaloglou M, Watson R, Rushworth C, et al. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a slipchip platform[J]. The Analyst,2015,140(1):258−64. doi: 10.1039/C4AN01683A
    [46]
    Shen F, Davydova E, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on slipchip[J]. Analytical Chemistry,2011,83(9):3533−40. doi: 10.1021/ac200247e
    [47]
    Yin J, Zou Z, Hu Z, et al. A "sample-in-multiplex-digital-answer-out" chip for fast detection of pathogens[J]. Lab on a Chip,2020,20(5):979−986. doi: 10.1039/C9LC01143A
    [48]
    Santiago-Felipe S, Tortajada-Genaro L A, Morais S, et al. Isothermal DNA amplification strategies for duplex microorganism detection[J]. Food Chemistry,2015,174:509−515. doi: 10.1016/j.foodchem.2014.11.080
    [49]
    Chen J G, Xu Y C, Yan H, et al. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification [J]. Lab on a Chip, 2018, 18 (2): 2441-2452.
    [50]
    Choi G, Jung J H, Park B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on a Chip,2016,16(12):2309−2316. doi: 10.1039/C6LC00329J
    [51]
    Oordt T V, Strohmeier O, Mark D, et al. The labdisk-A fully automated centrifugal lab-on-a-chip system for the detection of biological threats[C]// Berlin: Future Security Research Conference, 2012.
    [52]
    Kim T H, Park J, Kim C J, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry,2014,86(8):3841−3848. doi: 10.1021/ac403971h
  • Related Articles

    [1]ZHAO Xiaoliang, MOU He, ZHANG Jing, ZHANG Weijie. Optimization of the Extraction Process and in Vitro Antioxidant and Hypolipidemic Activities of Polysaccharides from Sophora flavescens[J]. Science and Technology of Food Industry, 2024, 45(13): 212-220. DOI: 10.13386/j.issn1002-0306.2023120305
    [2]KANG Zhongyu, ZHAO Daqing, YAO Jiajing, ZHAO Liming, HUANG Baotai, LIU Li, QI Bin. Optimization of Flash Extraction Process and Antioxidant Activity of American Ginseng Flower Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(7): 184-190. DOI: 10.13386/j.issn1002-0306.2023050278
    [3]HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219-225. DOI: 10.13386/j.issn1002-0306.2023040182
    [4]WANG Yan, DUAN Xuewei, ZHANG Minjun, YANG Huiwen, LIU Bing, YOU Tianhui. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191-200. DOI: 10.13386/j.issn1002-0306.2023020118
    [5]XIA Yuhong, LIU Ying, ZHOU Ming, ZHU Zhenxin, LU Yue, LIU Hongcun, MENG Juan, GONG Zhiqiang, YANG Lifang. Extraction Process Optimization and Antioxidant Activity of Total Flavonoids from Haloragis micrantha (Thunb.) R. Brown.[J]. Science and Technology of Food Industry, 2023, 44(18): 244-250. DOI: 10.13386/j.issn1002-0306.2022100235
    [6]ZHANG Minjun, DUAN Xuewei, WANG Yan, YANG Huiwen, LIU Bing, XIANG Wenjing, YOU Tianhui. Optimization of Ethanol Extraction Process for Active Components from Broussonetia papyrifera Root Bark and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 196-203. DOI: 10.13386/j.issn1002-0306.2022070304
    [7]WEI Yuping, ZHAO Yan, ZHANG Li, WANG Qiongqiong, PU Yunfeng, HOU Xujie, SONG Lijun. Optimization of Ultrasonic-assisted Extraction of Phenylethanoside from Cistanche tubulosa and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2022, 43(13): 148-155. DOI: 10.13386/j.issn1002-0306.2021090248
    [8]XU Xian, AN Zhaoxiang, LI Xiaoming, LIU Fuyuan, CHENG Hongzhen, SHEN Yonggen, CAI Zhipeng. Optimization of Extraction Process of Protein from Citrus Peel and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(16): 154-162. DOI: 10.13386/j.issn1002-0306.2020110070
    [9]LI Xin-ran, ZHANG Hua-xing, WENG Gui-ying, WANG Xu-ying. Optimization of Extraction Process of Total Flavonoids from Passion Fruit and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2020, 41(24): 106-112. DOI: 10.13386/j.issn1002-0306.2020020275
    [10]CAO Pei-jie, CUI Jin, MA Yan-hong. Optimization of Ultrasonic Enzymatic Extraction of Flavonoids from Mulberry Seed and Its Antibacterial and Antioxidant Activities[J]. Science and Technology of Food Industry, 2019, 40(2): 175-182. DOI: 10.13386/j.issn1002-0306.2019.02.031
  • Cited by

    Periodical cited type(2)

    1. 果欣雨,侯蔷,吴江爱,谷守国,周璇,郑百芹,周鑫. 注水肉的类型及检测方法研究. 养殖与饲料. 2025(02): 118-122 .
    2. 韩会丽. 如何区分PSE肉、注水肉及注胶肉. 青海畜牧兽医杂志. 2024(06): 56-57+60 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (406) PDF downloads (23) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return