WANG Yan, DUAN Xuewei, ZHANG Minjun, et al. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191−200. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020118.
Citation: WANG Yan, DUAN Xuewei, ZHANG Minjun, et al. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191−200. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020118.

Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity

More Information
  • Received Date: February 13, 2023
  • Available Online: September 12, 2023
  • In order to explore the optimum extraction process of polysaccharide and antioxidant activity in vitro in black corn kernel. In this study, black corn kernel was used as raw material, ultrasonic-assisted extraction was applied to extract polysaccharides from black corn kernel. To explore the effects of ultrasonic power, solid-liquid ratio, extraction time, temperature and frequency on the yield of polysaccharide. The extraction process of polysaccharide from black corn kernel was optimized by response surface methodology. Besides, the antioxidant activity of the polysaccharide was investigated by measuring its scavenging ability on DPPH·, ABTS+·, and ·OH. The results showed that the extraction yield of polysaccharide from black corn kernel could reach up to 41.09%±0.59%, in these conditions: The solid-liquid ratio was 1:20 g/mL, the extraction temperature was 74 ℃, the extraction time was 60 min and the extraction frequency was 3 times. The IC50 values of scavenging rates on DPPH·, ABTS+· and ·OH were 1.959, 1.529 and 0.3554 mg/mL, respectively. Moreover, the scavenging rates showed a certain dose-effect relationship with the sample concentration, indicating that the polysaccharide had a strong antioxidant activity, thus providing a theoretical basis for further research and utilization.
  • [1]
    王晓婷, 康明丽, 宋丽君, 等. 大孔吸附树脂法纯化黑玉米花青素工艺[J]. 食品工业,2022,43(5):19−24

    WANG X T, KANG M L, SONG L J, et al. Purification of anthocyanin from black corn by macroporous adsorption resin[J]. The Food Industry,2022,43(5):19−24.
    [2]
    路欣, 梁霞, 孟婷婷, 等. 山西主栽黑玉米营养成分及其抗氧化作用[J]. 现代食品科技,2021,37(1):73−83 doi: 10.13982/j.mfst.1673-9078.2021.01.0704

    LU X, LIANG X, MENG T T, et al. Nutrient composition and antioxidant effect of main black corn in Shanxi[J]. Modern Food Science and Technology,2021,37(1):73−83. doi: 10.13982/j.mfst.1673-9078.2021.01.0704
    [3]
    魏俊青, 刘晓娟, 肖春玲. 酶解法提取紫玉米多糖技术的研究[J]. 食品工业科技,2012,33(23):188−191 doi: 10.13386/j.issn1002-0306.2012.23.035

    WEI J Q, LIU X J, XIAO C L. Study on the extraction technology of polysaccharide from purple corn by enzyme method[J]. Science and Technology of Food Industry,2012,33(23):188−191. doi: 10.13386/j.issn1002-0306.2012.23.035
    [4]
    李靖元, 柳青, 王国良, 等. 黑玉米的营养优势及开发应用[J]. 食品研究与开发,2021,42(5):214−218 doi: 10.12161/j.issn.1005-6521.2021.05.036

    LI J Y, LIU Q, WANG G L, et al. Nutritional advantage and development of black maize[J]. Food Research and Development,2021,42(5):214−218. doi: 10.12161/j.issn.1005-6521.2021.05.036
    [5]
    杨斯惠, 向月, 曹亚楠, 等. 植物多糖的益生作用及其影响因素研究进展[J]. 食品科学,2022,43(11):301−310 doi: 10.7506/spkx1002-6630-20210610-132

    YANG S H, XIANG Y, CAO Y N, et al. Progress in research on the prebiotic effects of plant polysaccharides and the factors influencing them[J]. Food Science,2022,43(11):301−310. doi: 10.7506/spkx1002-6630-20210610-132
    [6]
    WANG Q J, MENG X Y, ZHU L, et al. A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens[J]. International Journal of Biological Macromolecules,2019,130:213−219. doi: 10.1016/j.ijbiomac.2019.01.168
    [7]
    SHEN W D, LI X Y, DENG Y Y, et al. Polygonatum cyrtonema Hua polysaccharide exhibits anti-fatigue activity via regulating osteocalcin signaling[J]. International Journal of Biological Macromolecules,2021,175:235−241. doi: 10.1016/j.ijbiomac.2021.01.200
    [8]
    MEI X Y, YANG W J, HUANG G L, et al. The antioxidant activities of balsam pear polysaccharide[J]. International Journal of Biological Macromolecules,2020,142:232−236. doi: 10.1016/j.ijbiomac.2019.09.168
    [9]
    LEE D Y, PARK C W, LEE S J, et al. Anti-cancer effects of Panax ginseng berry polysaccharides via activation of immune-related cells[J]. Frontiers in Pharmacology,2019,10:1411. doi: 10.3389/fphar.2019.01411
    [10]
    GUAN Y, SUN H F, CHEN H Y, et al. Physicochemical characterization and the hypoglycemia effects of polysaccharide isolated from Passiflora edulis Sims peel[J]. Food & Function,2021,12(9):4221−4230.
    [11]
    CHEN F J, XU Y L, DING N N, et al. Extraction of Radix trichosanthis polysaccharides for potential antihyperlipidemic application[J]. BioMed Research International,2022,2022:3811036.
    [12]
    KALININA T S, ZLENKO D V, KISELEV A V, et al. Antiviral activity of the high-molecular-weight plant polysaccharides (Panavir®)[J]. International Journal of Biological Macromolecules,2020,161:936−938. doi: 10.1016/j.ijbiomac.2020.06.031
    [13]
    杨占群, 王星慧, 杨丽, 等. 黑糯玉米多糖对小鼠的抗疲劳作用及其机制的研究[J]. 粮食与油脂,2020,33(2):88−90 doi: 10.3969/j.issn.1008-9578.2020.02.023

    YANG Z Q, WANG X H, YANG L, et al. Study on the anti-fatigue effect and mechanism of black glutinous maize polysaccharide on mice[J]. Cereals & Oils,2020,33(2):88−90. doi: 10.3969/j.issn.1008-9578.2020.02.023
    [14]
    杨占群, 宋小幸, 周倩瑜, 等. 响应面法优化微波辅助提取黑糯玉米多糖的工艺及其对疲劳小鼠氧化损伤的影响[J]. 粮食与油脂,2020,33(6):92−96 doi: 10.3969/j.issn.1008-9578.2020.06.025

    YANG Z Q, SONG X X, ZHOU Q Y, et al. Optimization of microwave-assisted extraction of polysaccharide from black glutinous maize by response surface method and its protection effect of oxidative damage on fatigue mice[J]. Cereals & Oils,2020,33(6):92−96. doi: 10.3969/j.issn.1008-9578.2020.06.025
    [15]
    ZHANG Z, ZHANG W S, DU X F. Hypoglycemic effects of black glutinous corn polysaccharides on alloxan-induced diabetic mice[J]. European Food Research and Technology,2010,230(3):411−415. doi: 10.1007/s00217-009-1182-1
    [16]
    关海宁, 刁小琴, 王辉, 等. 小组合设计优化超声辅助酶法提取黑玉米粗多糖[J]. 食品工业,2011,32(1):54−57

    GUAN H N, DIAO X Q, WANG H, et al. Small composite design for optimizing the extraction of polysaccharide from black corn by uultrasonic wave and enzyme[J]. The Food Industry,2011,32(1):54−57.
    [17]
    高晗. 水提和碱提法制备黄秋葵多糖及其对肠道菌群的影响[D]. 合肥:合肥工业大学, 2019

    GAO H. Preparation of okra polysaccharide fractions extracted by water and alkaline solution and modulation of gut microbiota in mice[D]. Hefei:Hefei University of Technology, 2019.
    [18]
    张红运. 不同提取工艺对大豆种皮多糖结构的影响[D]. 锦州:渤海大学, 2019

    ZHANG H Y. Effects of different extraction processes on the structure of soy hull polysaccharide[D]. Jinzhou:Bohai University, 2019.
    [19]
    高林晓, 田琴, 郭蒙, 等. 响应面法优化提取灵香草中绿原酸工艺研究[J]. 粮食与油脂,2022,35(6):106−109,115

    GAO L X, TIAN Q, GUO M, et al. Optimization of chlorogenic acid extraction from Lysimachia foenum-graecum Hance by response surface methodology[J]. Cereals & Oils,2022,35(6):106−109,115.
    [20]
    SINGLA M, SIT N. Application of ultrasound in combination with other technologies in food processing: A review[J]. Ultrasonics Sonochemistry,2021,73:105506. doi: 10.1016/j.ultsonch.2021.105506
    [21]
    关海宁, 刁小琴, 唐华, 等. 响应面法优化超声波辅助提取黑玉米多糖工艺研究[J]. 农业机械,2011,665(5):135−138 doi: 10.16167/j.cnki.1000-9868.2011.05.006

    GUAN H N, DIAO X Q, TANG H, et al. Optimization of ultrasonic-assisted extraction of black corn polysaccharides by response surface methodology[J]. Farm Machinery,2011,665(5):135−138. doi: 10.16167/j.cnki.1000-9868.2011.05.006
    [22]
    郭佳. 超声波辅助提取对枸杞细胞壁多糖解聚规律的研究[D]. 银川:宁夏大学, 2022

    GUO J. Depoly merization of Lycium barbarum cell wall polysaccharides by ultrasonic assisted extraction[D]. Yinchuan:Ningxia University, 2022.
    [23]
    王文骏. 柑橘皮果胶超声辅助提取的作用机制研究[D]. 杭州:浙江大学, 2018

    WANG W J. The research on the mechanism of ultrasound-assisted extraction of pectin from citrus peel[D]. Hangzhou:Zhejiang University, 2018.
    [24]
    马晓宁, 秦令祥, 丁昱婵, 等. 响应面优化超声波辅助提取杏鲍菇多糖的工艺及其抗疲劳活性测定研究[J]. 中国食品添加剂,2023,34(3):273−279

    MA X N, QIN L X, DING Y C, et al. Optimization of ultrasonic assisted extraction of Pleurotus eryngii polysaccharide by response surface methodology and its antifatigue activity[J]. China Food Additives,2023,34(3):273−279.
    [25]
    WANG K J, GUO G T, CHENG J X, et al. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity[J]. International Journal of Biological Macromolecules,2021,191:1038−1045. doi: 10.1016/j.ijbiomac.2021.09.174
    [26]
    HU X T, XU F R, LI J L, et al. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility[J]. Food Chemistry,2022,374:131636. doi: 10.1016/j.foodchem.2021.131636
    [27]
    盛家荣, 张斌, 黄初升, 等. 不同预处理条件对扶芳藤多糖提取的影响[J]. 广西师范学院学报(自然科学版),2011,28(2):38−42 doi: 10.3969/j.issn.1002-8743.2011.02.010

    SHENG J R, ZHANG B, HUANG C S, et al. Effect of preconditioning with different conditions on the extraction of polysaccharides from Euonymus fortunei[J]. Journal of Guangxi Teachers Education University: Natural Science Edition,2011,28(2):38−42. doi: 10.3969/j.issn.1002-8743.2011.02.010
    [28]
    CHEN W W, JIA Z B, ZHU J J, et al. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel ( Mytilus coruscus) and their antioxidant activities[J]. International Journal of Biological Macromolecules,2019,140:1116−1125. doi: 10.1016/j.ijbiomac.2019.08.136
    [29]
    CHEN F, HUANG G L, YANG Z Y, et al. Antioxidant activity of Momordica charantia polysaccharide and its derivatives[J]. International Journal of Biological Macromolecules,2019,138:673−680. doi: 10.1016/j.ijbiomac.2019.07.129
    [30]
    李欣欣, 李文香. 桦褐孔菌多糖的分离纯化及其抗氧化活性测定[J]. 食品工业科技,2021,42(11):192−197 doi: 10.13386/j.issn1002-0306.2020040211

    LI X X, LI W X. Isolation, purification and antioxidant activity of Inonotus obliquus polysaccharide[J]. Science and Technology of Food Industry,2021,42(11):192−197. doi: 10.13386/j.issn1002-0306.2020040211
    [31]
    CHEUNG L M, CHEUNG P C K, OOI V E C. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chemistry,2003,81(2):249−255. doi: 10.1016/S0308-8146(02)00419-3
    [32]
    商佳琦, 邹丹阳, 滕翔宇, 等. 5种食用菌多糖的结构特征及抗氧化活性对比[J]. 食品工业科技,2020,41(15):77−83,89 doi: 10.13386/j.issn1002-0306.2020.15.013

    SHANG J Q, ZOU D Y, TENG X Y, et al. Structural characterization and antioxidant activity of five kinds of edible fungus polysaccharides[J]. Science and Technology of Food Industry,2020,41(15):77−83,89. doi: 10.13386/j.issn1002-0306.2020.15.013
    [33]
    HUANG Q Q, XIAO B, CHEN S, et al. Effect of enzyme-assisted extraction on the chemical properties and antioxidant activities of polysaccharides obtained from the wood ear mushroom, Auricularia auricula (Agaricomycetes)[J]. International Journal of Medicinal Mushrooms,2022,24(2):49−62. doi: 10.1615/IntJMedMushrooms.2021041906
    [34]
    ZAN L X, SONG W T, WANG W W, et al. Purification, antioxidant activities, encapsulation, and release profile of total flavonoids in peony seed meal[J]. Food Science & Nutrition,2022,10(4):1051−1057.
    [35]
    XIAO J R, CHEN X, ZHAN Q P, et al. Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide[J]. Ultrasonics Sonochemistry,2022,82:105901. doi: 10.1016/j.ultsonch.2021.105901
    [36]
    仇玉洁. 菱角多糖的超声提取、结构表征及其对巨噬细胞免疫激活效应的研究[D]. 镇江: 江苏大学, 2022.

    QIU Y J. Preparation, structure characterization and immunostimulatory activity of polysaccharide from Trapa bispinosa L.[D]. Zhenjiang: Jiangsu University, 2022.
    [37]
    王鑫, 韩烨, 马永强, 等. 超声辅助提取甜玉米芯多糖工艺优化及抗氧化性评价[J]. 粮食与油脂,2022,35(7):115−119 doi: 10.3969/j.issn.1008-9578.2022.07.025

    WANG X, HAN Y, MA Y Q, et al. Optimization of ultrasonic assisted extraction of polysaccharide from sweet corncob and evaluation of its antioxidant activity[J]. Cereals & Oils,2022,35(7):115−119. doi: 10.3969/j.issn.1008-9578.2022.07.025
    [38]
    张猛猛. 玛咖根部多糖的结构鉴定及免疫调节活性研究[D]. 广州:华南理工大学, 2019

    ZHANG M M. Structural identification and the immunological activity of polysaccharides from maca root (Lepidium meyenii Walp.)[D]. Guangzhou:South China University of Technology, 2019.
    [39]
    WANG Y P, LIU Y, HU Y H. Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities[J]. Carbohydrate Polymers,2014,111:324−332. doi: 10.1016/j.carbpol.2014.03.083
    [40]
    姚佳, 黄希莲, 姚玉仙, 等. 响应面法优化多穗石柯粗多糖提取工艺及抗氧化活性分析[J]. 食品科技,2021,46(9):195−201 doi: 10.13684/j.cnki.spkj.2021.09.032

    YAO J, HUANG X L, YAO Y X, et al. Optimization of extraction and antioxidant activity of crude polysaccharides from Lithocarpus polystachyus (Wall.) Rehd. by response surface methodology[J]. Food Science and Technology,2021,46(9):195−201. doi: 10.13684/j.cnki.spkj.2021.09.032
    [41]
    孙聪聪, 庞道睿, 黎尔纳, 等. 响应面法优化 β-半乳糖苷酶法制备低聚半乳糖工艺[J]. 食品工业科技,2022,43(22):246−255

    SUN C C, PANG D R, LI E N, et al. Optimization of preparation of galactooligosaccharides by β-galactosidase using response surface methodology[J]. Science and Technology of Food Industry,2022,43(22):246−255.
    [42]
    王晓雨, 任贵平, 程竹林, 等. 响应面法优化枸杞无硫促干护色工艺及其对品质的影响[J]. 食品工业科技,2022,43(19):246−255

    WANG X Y, REN G P, CHENG Z L, et al. Optimization the sulfur-free drying and color protection process of Lycium barbarum by response surface methodology and its effect on quality[J]. Science and Technology of Food Industry,2022,43(19):246−255.
    [43]
    殷海洋, 刘振春, 张世康, 等. 响应面优化超声波辅助酶法提取油莎豆ACE抑制肽的工艺[J]. 食品工业科技,2021,42(14):182−187 doi: 10.13386/j.issn1002-0306.2020100130

    YIN H Y, LIU Z C, ZHANG S K, et al. Optimization of ultrasonic-assisted enzymatic extraction of ACE inhibitory peptides from Cyperus esculentus by response surface method[J]. Science and Technology of Food Industry,2021,42(14):182−187. doi: 10.13386/j.issn1002-0306.2020100130
    [44]
    陈劲然. 超声波对黄大茶多糖的提取率、结构及生物活性的影响[D]. 合肥:安徽农业大学, 2020

    CHEN J R. Effects of ultrasound on extraction rate, structure and biological activity of polysaccharide from large yellow tea[D]. Hefei:Anhui Agricultural University, 2020.
    [45]
    胡楠楠, 亓伟华, 尤丽新, 等. 玉米须多糖发酵工艺优化及其抗氧化活性研究[J]. 中国酿造,2022,41(10):159−164

    HU N N, QI W H, YOU L X, et al. Optimization of fermentation technology and antioxidant activity of Stigma maydis polysaccharide[J]. China Brewing,2022,41(10):159−164.
    [46]
    王杰. 槐角多糖分离纯化、结构分析及生理活性研究[D]. 北京:北京林业大学, 2019

    WANG J. Isolation, purification, structure and physiological activity of polysaccharides from Sophorae Fructus[D]. Beijing:Beijing Forestry University, 2019.
    [47]
    王雯雯. 微生物降解玉米秸秆多糖结构鉴定及其生物活性研究[D]. 天津:天津理工大学, 2022

    WANG W W. Study on the structure identification and biological activity of microbial degradation of corn stalk polysaccharide[D]. Tianjin:Tianjin University of Technology, 2022.
    [48]
    刘羽婷, 宫春宇, 廉雅雯, 等. 不同预处理方式对玉米须多糖提取及抗氧化活性的影响[J]. 食品科技,2022,47(4):209−215 doi: 10.3969/j.issn.1005-9989.2022.4.spkj202204030

    LIU Y T, GONG C Y, LIAN Y W, et al. Effects of different pretreatment methods on extraction and antioxidant activity of polysaccharides from corn silk[J]. Food Science and Technology,2022,47(4):209−215. doi: 10.3969/j.issn.1005-9989.2022.4.spkj202204030
    [49]
    杜涓, 安晓萍, 刘娜, 等. 酶解对玉米芯多糖结构及体外抗氧化活性的影响[J]. 饲料工业,2021,42(21):45−50 doi: 10.13302/j.cnki.fi.2021.21.008

    DU J, AN X P, LIU N, et al. Effect of enzymatic hydrolysis on structure and in vitro antioxidant activity of corncob polysaccharide[J]. Beverage Industry,2021,42(21):45−50. doi: 10.13302/j.cnki.fi.2021.21.008
  • Related Articles

    [1]HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219-225. DOI: 10.13386/j.issn1002-0306.2023040182
    [2]WANG Yan, DUAN Xuewei, ZHANG Minjun, YANG Huiwen, LIU Bing, YOU Tianhui. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191-200. DOI: 10.13386/j.issn1002-0306.2023020118
    [3]Liming ZHAO, Xuyao GUO, Yingmin MAO, Daqing ZHAO, Baotai HUANG, Jiaqi LI, Li LIU, Bin QI. Optimization of Extraction Process and Antioxidant Activity of Polysaccharide from Panax quinquefolium Fruit by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 160-166. DOI: 10.13386/j.issn1002-0306.2022070318
    [4]MO Yi-fan, YAO Ling-yun, FENG Tao, SONG Shi-qing, SUN Min. Optimization of Flash Extraction Process of Total Flavonoids from Fig (Ficus carica L.) and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2020, 41(12): 186-191,220. DOI: 10.13386/j.issn1002-0306.2020.12.030
    [5]XU Hai-tang, LIAO Hua-zhen, ZHAO Yan-zhi, ZHANG Jin-yan, ZHOU Ju-ying. Optimization Extraction of Polysaccharide from Sophora tonkinensis Gagnep by Response Surface Methodology and Its Antioxidant Activity of Fractionated Alcohol Precipitation Components[J]. Science and Technology of Food Industry, 2019, 40(22): 157-162. DOI: 10.13386/j.issn1002-0306.2019.22.028
    [6]JIA Fu-huai, TU Hong-jian, WANG Jun, TAO Gang, JI Cun-rui, WANG Cai-xia, XIONG Fei-fei, YAN Yong-qiu. Optimization of Ultrasonic-Flash Synergistic Extraction and Antitumor Activity of Polysaccharide from Fibrous Root of Bletilla striata[J]. Science and Technology of Food Industry, 2019, 40(20): 188-195,208. DOI: 10.13386/j.issn1002-0306.2019.20.030
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SHI Xuan, CHENG Xiao-qing, YANG Yong, TAN Hong-jun, LIANG Xu-ming, SHI Wen-juan, SU Zhi-min. Optimization the extraction process of polysaccharide by response surface methodology from the Tremella fuciformis pedicel and its antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 297-301. DOI: 10.13386/j.issn1002-0306.2017.02.049
    [9]GONG Jian. Study on the optimization of enzymatic extraction technology of polysaccharide from Camellia japonica L.by response surface methodology and investigation on its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (17): 197-201. DOI: 10.13386/j.issn1002-0306.2015.17.031
    [10]KE Chun-lin, LI Zuo-mei, LU Bin-yu, QIAN Shi-quan, ZHANG Bin, YUAN Jing. Study on optimization of extraction conditions for polysaccharide from pomegranate flowers and its antioxidant activities[J]. Science and Technology of Food Industry, 2015, (08): 286-289. DOI: 10.13386/j.issn1002-0306.2015.08.051
  • Cited by

    Periodical cited type(1)

    1. 刘丽桃,傅春燕,刘诗薇,周秀娟,谢雨芊,欧阳玉珍,王彪,葛金文. 响应面法优化降脂通脉方多糖的提取工艺研究. 中医药导报. 2024(12): 58-62 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (160) PDF downloads (31) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return