HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219−225. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040182.
Citation: HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219−225. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040182.

Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity

More Information
  • Received Date: April 20, 2023
  • Available Online: September 13, 2023
  • To optimize the extraction process of polysaccharide form Solanum lyratum and investigate its in vitro antioxidative activity. In this study, response surface methodology was employed to optimize the ultrasonic-assisted extraction process of polysaccharides from Solanum lyratum. Single-factor experiments were conducted to explore the effects of three factors: Extraction temperature, extraction time, and solid-liquid ratio on the yield. Fourier transform infrared spectroscopy (FTIR) was used to analyze the structure of Solanum lyratum polysaccharide, and in vitro antioxidant activity was investigated. The results showed that the optimal extraction conditions were the material-liquid ratio of 1:57 g/mL, the extraction time of 58 min, and the extraction temperature of 65 ℃. Under these conditions, the yield of polysaccharides was 7.54%±0.12%. Fourier transform infrared spectroscopy of the extracted polysaccharides exhibited a typical polysaccharide absorbance. Moreover, the half-maximal inhibitory concentrations (IC50) of polysaccharides against DPPH and ABTS+ free radicals were 1.104 and 1.408 mg/mL, respectively, indicating significant in vitro antioxidant activity. The results of this study provided a theoretical foundation for the further development and utilization of Solanum lyratum polysaccharides.
  • [1]
    乔曼华, 张林果. 白毛藤化学成分及其抗肿瘤活性[J]. 中成药,2022,44(9):2854−2861 doi: 10.3969/j.issn.1001-1528.2022.09.019

    QIAO M H, ZHANG L G. Chemical constituents from Solanum lyratum and their antitumor activities[J]. Chinese Traditional Patent Medicine,2022,44(9):2854−2861. doi: 10.3969/j.issn.1001-1528.2022.09.019
    [2]
    ZHANG C, LI Z M, WANG J, et al. Ethanol extracts of Solanum lyratum Thunb regulate ovarian cancer cell proliferation, apoptosis, and epithelial-to-mesenchymal transition (emt) via the ROS-mediated p53 pathway[J]. Journal of Immunology Research,2021,2021(Pt.2):5569354.
    [3]
    魏国栋, 高山. 白英的有效部位和药理作用研究进展[J]. 中国医药导报,2022,19(11):38−41 doi: 10.3969/j.issn.1673-7210.2022.11.yycyzx202211009

    WEI G D, GAO S. Progress of effective parts and pharmacological action of Solanum lyratum Thunb[J]. China Medical Herald,2022,19(11):38−41. doi: 10.3969/j.issn.1673-7210.2022.11.yycyzx202211009
    [4]
    LIU X, WANG F L, CHEN Y R, et al. Research progress on chemical components and pharmacological action of Solanum l yratum Thunb[J]. The Journal of Pharmacy and Pharmacology,2023,75(3):328−362. doi: 10.1093/jpp/rgac099
    [5]
    TADAYOSHI Y. Pill preparation of specifically added Chinese herbal remedy of cinnamon bark and powdered hoelen and production thereof: JP, H03127736A[P]. 2023-08-31.
    [6]
    杨惠麟, 孙志良, 丁榕, 等. 白毛藤多糖的提取及体外抑菌试验[J]. 中兽医医药杂志,2005(4):24−25 doi: 10.3969/j.issn.1000-6354.2005.04.010

    YANG H L, SUN Z L, DING R, et al. Extraction and in vitro antibacterial test of polysaccharides from Solanum lyratum[J]. Journal of Traditional Chinese Veterinary Medicine,2005(4):24−25. doi: 10.3969/j.issn.1000-6354.2005.04.010
    [7]
    FENG Y Y, WANG W, LIU C H. Effect of Solanum lyratum polysaccharide on malignant behaviors of lung cancer cells by regulating the Circ_UHRF1/miR-513b-5p Axis[J]. Cellular and Molecular Biology (Noisy-le-Grand, France),2022,67(6):191−199. doi: 10.14715/cmb/2021.67.6.26
    [8]
    王婷婷, 郑学香, 曾真, 等. 白毛藤多糖通过调控miR-1270/CCNG2通路抑制肺癌细胞增殖、促进细胞凋亡的机制[J]. 中国老年学杂志,2021,41(19):4382−4387 doi: 10.3969/j.issn.1005-9202.2021.19.067

    WANG T T, ZHENG X X, ZENG Z, et al. The mechanism of Solanum lyratum polysaccharide inhibiting lung cancer cell proliferation and promoting cell apoptosis by regulating the miR-1270/CCNG2 pathway[J]. Chinese Journal of Gerontology,2021,41(19):4382−4387. doi: 10.3969/j.issn.1005-9202.2021.19.067
    [9]
    张燕, 孙志良, 陈小军. 从组织学角度研究白毛藤多糖对鸡免疫器官的影响[J]. 畜牧兽医科技信息,2007(8):24−25 doi: 10.3969/j.issn.1671-6027.2007.08.019

    ZHANG Y, SUN Z L, CHEN X J. Study on the effects of polysaccharides from Solanum lyratum on the immune organs of chicken from a histological perspective[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine,2007(8):24−25. doi: 10.3969/j.issn.1671-6027.2007.08.019
    [10]
    王林江, 雷倩, 马双良, 等. 不同产地白英中多糖含量的测定[J]. 时珍国医国药,2010,21(9):2176−2177 doi: 10.3969/j.issn.1008-0805.2010.09.020

    WANG L J, LEI Q, MA X L, et al. Determination of polysaccharide content in Solanum lyratum from different producing areas[J]. Lishizhen Medicine and Materia Medica Research,2010,21(9):2176−2177. doi: 10.3969/j.issn.1008-0805.2010.09.020
    [11]
    杨惠麟. 白毛藤多糖的提取及其药效学的初步研究[D]. 长沙:湖南农业大学, 2006

    YANG H L. Study on the extraction and pharmacodynamics of Solanum Lyratum Thunb polysaccharides[D]. Changsha:Hunan Agricultural University, 2006.
    [12]
    WU Y L, PAN Y J, SUN C R. Isolation, purification and structural investigation of a water-soluble polysaccharide from Sola num lyratum Thunb[J]. International Journal of Biological Macromolecules,2005,36(4):241−245. doi: 10.1016/j.ijbiomac.2005.06.007
    [13]
    YANG J, TONG Y P, ZHU K M, et al. Optimization of mechanochemical-assisted extraction and decoloration by resins of polysaccharides from petals of Crocus sativus L[J]. Journal of Food Processing and Preservation,2018,42(1):e13369.1−e13369.11.
    [14]
    CHEN X, ZHANG H B, DU W Q, et al. Comparison of different extraction methods for polysaccharides from Crataegus pinnatifida Bunge[J]. International Journal of Biological Macromolecules,2020,150:1011−1019. doi: 10.1016/j.ijbiomac.2019.11.056
    [15]
    KUO W W, HUANG C Y, CHUNG J G, et al. Crude extracts of Solanum lyratum protect endothelial cells against oxidized low-density lipoprotein-induced injury by direct antioxidant action[J]. Journal of Vascular Surgery,2009,50(4):849−860. doi: 10.1016/j.jvs.2009.06.046
    [16]
    毛建山, 吴亚林, 黄静, 等. 白毛藤多糖的分离、纯化和鉴定[J]. 中草药,2005(5):654−656 doi: 10.3321/j.issn:0253-2670.2005.05.006

    MAO J S, WU Y L, HUANG J, et al. Isolation, purification, and identification of polysaccharides from Solanum lyratum[J]. Chinese Traditional and Herbal Drugs,2005(5):654−656. doi: 10.3321/j.issn:0253-2670.2005.05.006
    [17]
    张鹏, 花燕莹, 唐森, 等. 微波辅助提取龙葵果多糖及抗氧化活性研究[J]. 粮食与油脂,2021,34(10):74−78,91 doi: 10.3969/j.issn.1008-9578.2021.10.018

    ZHANG P, HUA Y Y, TANG S, et al. Study on microwave-assisted extraction and antioxidant activity of polysaccharides from Solanum nigrum L. fruit[J]. Cereals & Oils,2021,34(10):74−78,91. doi: 10.3969/j.issn.1008-9578.2021.10.018
    [18]
    刘宇, 戴沅霖, 马越, 等. 金银花粗多糖提取工艺优化及其抗氧化活性评价[J]. 食品工业科技,2023,44(7):188−196

    LIU Y, DAI Y L, MA Y, et al. Extraction process optimization and antioxidant activity evaluation of crude polysaccharides from Lonicera japonica[J]. Science and Technology of Food Industry,2023,44(7):188−196.
    [19]
    LI X, OUYANG X, CAI R, er al. 3',8″-Dimerization enhances the antioxidant capacity of flavonoids:Evidence from acacetin and isoginkgetin[J]. Molecules,2019,24(11):2039. doi: 10.3390/molecules24112039
    [20]
    MENG Q, CHEN Z, CHEN F, et al. Optimization of ultrasonic-assisted extraction of polysaccharides from Hemerocallis citrina and the antioxidant activity study[J]. Journal of Food Science,2021,86(7):3082−3096. doi: 10.1111/1750-3841.15806
    [21]
    GU J Y, ZHANG H H, ZHANG J X, et al. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L[J]. Carbohydrate Polymers,2020,246:116595. doi: 10.1016/j.carbpol.2020.116595
    [22]
    李倩倩, 程婷婷, 刘涵, 等. 刺梨果多糖提取工艺优化及抗氧化活性研究[J]. 粮食与油脂,2022,35(11):104−108,113 doi: 10.3969/j.issn.1008-9578.2022.11.022

    LI Q Q, CHEN T T, LIU H, et al. Study on the extraction technology and antioxidant activity of polysaccharides from Rosa roxburghii Tratt. fruit[J]. Cereals & Oils,2022,35(11):104−108,113. doi: 10.3969/j.issn.1008-9578.2022.11.022
    [23]
    WANG Y Y, WANG X Y, XIONG Y, et al. Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides[J]. Food and Bioproducts Processing,2019,116:98−104. doi: 10.1016/j.fbp.2019.04.014
    [24]
    李楠, 李桂芬, 刘亚琴, 等. 响应面法优化超声提取柳罐枣多糖及其光谱性质研究[J]. 中国食品添加剂,2022,33(5):57−63

    LI N, LI G F, LIU Y Q, et al. Optimization of ultrasonic extraction of polysaccharides from Liuguan jujube by response surface methodology and analysis of its spectral properties[J]. China Food Additives,2022,33(5):57−63.
    [25]
    骆杨庆, 吴增林, 李升福, 等. 响应面法优化玉米浸液蛋白提取工艺及单细胞蛋白发酵的研究[J]. 食品工业科技,2022,43(10):231−237

    LUO Y Q, WU Z L, LI S F, et al. Study on extraction process of corn steep liquor protein by response surface methodology and single cell protein fermentation[J]. Science and Technology of Food Industry,2022,43(10):231−237.
    [26]
    高丹丹, 郭鹏辉, 祁高展, 等. 响应面法优化薄荷全草总黄酮的提取工艺[J]. 食品工业科技,2015,36(2):299−303,322 doi: 10.13386/j.issn1002-0306.2015.02.056

    GAO D D, GUO P H, QI G Z, et al. Optimization of extraction technology of total flavonoids from Mentha haplocalyx by response surface methodology[J]. Science and Technology of Food Industry,2015,36(2):299−303,322. doi: 10.13386/j.issn1002-0306.2015.02.056
    [27]
    张小辉, 卫梦尧, 杨永志, 等. 响应面法优化铁皮石斛多糖纯化工艺[J]. 食品工业科技,2021,42(16):177−184

    ZHANG X H, WEI M Y, YANG Y Z, et al. Optimization of purification process of polysaccharides from Dendrobium officinale by response surface methodology[J]. Science and Technology of Food Industry,2021,42(16):177−184.
    [28]
    庞会娜, 董红影, 肖凤琴, 等. 响应面法优化葛根蛋白酶解工艺及其体外抗氧化特性分析[J]. 食品工业科技,2022,43(24):197−204

    PANG H N, DONG H Y, XIAO F Q, et al. Optimization of enzymatic hydrolysis process of Pueraria protein by response surface methodology and its antioxidant properties in vitro[J]. Science and Technology of Food Industry,2022,43(24):197−204.
    [29]
    WANG Y F, XIAN J H, XI X G, et al. Multi-fingerprint and quality control analysis of tea polysaccharides[J]. Carbohydrate Polymers,2013,92(1):583−590. doi: 10.1016/j.carbpol.2012.09.004
    [30]
    HUANG H, HUANG G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides[J]. Chemical Biology & Drug Design,2020,96(5):1209−1222.
    [31]
    WANG X L, ZHANG Y F, LIU Z K, et al. Purification, characterization, and antioxidant activity of polysaccharides isolated from Cortex Periplocae[J]. Molecules,2017,22(11):1866. doi: 10.3390/molecules22111866
    [32]
    QIN H N, HUANG L, TENG J W, et al. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry,2021,353:129419. doi: 10.1016/j.foodchem.2021.129419
    [33]
    TANG M Y, HOU F, WU Y W, et al. Purification, characterization and tyrosinase inhibition activity of polysaccharides from chestnut ( Castanea mollissima Bl.) kernel[J]. International Journal of Biological Macromolecules,2019,131:309−314. doi: 10.1016/j.ijbiomac.2019.03.065
    [34]
    CAI W R, XIE L L, CHEN Y. Purification, characterization and anticoagulant activity of the polysaccharides from green tea[J]. Carbohydrate Polymers,2013,92(2):1086−1090. doi: 10.1016/j.carbpol.2012.10.057

Catalog

    Article Metrics

    Article views (132) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return