GAO Sheng, XU Jianhua. Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(22): 7−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030285.
Citation: GAO Sheng, XU Jianhua. Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(22): 7−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030285.

Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy

More Information
  • Received Date: March 22, 2022
  • Available Online: October 17, 2022
  • The internal quality indicators such as soluble solids content (SSC), total acid (TA), pH, firmness index (FI) and moisture content (MC) of red globe grapes affect the taste and quality of the fruit directly. And they are also criterion for maturity. In order to obtain the internal quality indicators showed above quickly and avoid unnecessary inspection losses, a new non-destructive detection model for red globe grapes was proposed in this paper. The near-infrared spectral information of 360 samples was collected using the Antaris II near-infrared spectrometer for red globe grapes in the growing period. The collected spectral information was pre-processed by algorithms such as SNV and then modelled to determine the optimal spectral pre-processing method. The characteristic wavelengths of the spectral information were extracted by dimensionality reduction algorithms. Finally, the detection models for SSC, TA, pH, FI and MC of red grapes were established respectively based on Partial Least Squares Regression (PLSR) algorithm. For SSC and TA the optimal detection model was SG-CARS-SPA-PLSR, for pH the optimal detection model was MA-CARS-SPA-PLSR, and for FI and MC the optimal detection model was SG-CARS-PLSR. The correlation coefficients (Rp) of the optimal PLSR models established of the prediction sets for red globe grape SSC, TA, pH, FI and MC were 0.9787, 0.9811, 0.9870, 0.9568 and 0.9329 respectively, and the residual prediction deviations(RPD) were 4.8637, 4.9006, 6.0939, 3.4453 and 2.5825 respectively, indicating that the above models had high detection accuracy. The models established in this paper would provide a reliable method for the detection of the internal quality of red globe grapes.ity of red globe grapes.
  • [1]
    高升, 王巧华, 李庆旭, 等. 基于近红外光谱的红提维生素C含量、糖度及总酸含量无损检测方法[J]. 分析化学,2019,47(6):941−949. [GAO Sheng, WANG Qiaohua, LI Qingxu, et al. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry,2019,47(6):941−949.
    [2]
    陈辰, 鲁晓翔, 张鹏, 等. 红提葡萄VC含量的可见/近红外检测模型[J]. 食品与机械,2015,31(5):70−74. [CHEN Chen, LU Xiaoxiang, ZHANG Peng, et al. Determination of vitamin C in red globe grape based on visible/near-infrared diffuse reflectance spectroscopy[J]. Food & Machinery,2015,31(5):70−74.
    [3]
    田海龙, 张平, 农绍庄, 等. 基于TPA测试法对1-MCP处理后葡萄果实质构性能的分析[J]. 食品与机械,2011,27(3):104−107. [TIAN Hailong, ZHANG Ping, NONG Shaozhuang, et al. Analysis on texture properties of treated grape fruit with 1-MCP based on TPA test[J]. Food & Machinery,2011,27(3):104−107. doi: 10.3969/j.issn.1003-5788.2011.03.033
    [4]
    ZHANG D, XU L, WANG Q, et al. The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by Vis-NIR spectroscopy[J]. Food Analytical Methods,2018,12:1−12.
    [5]
    邓云, 吴颖, 李云飞. 温度和相对湿度对采后葡萄浆果硬度的影响[J]. 食品科学,2007(3):46−49. [DENG Yun, WU Ying, LI Yunfei. Effects of temperature and relative humidity on postharvest grapes berry firmness[J]. Food Science,2007(3):46−49. doi: 10.3321/j.issn:1002-6630.2007.03.006
    [6]
    朱丹实, 张巧曼, 曹雪慧, 等. 湿度条件对巨峰葡萄贮藏过程中水分及质构变化的影响[J]. 食品科学,2014,35(22):340−345. [ZHU Danshi, ZHANG Qiaoman, CAO Xuehui, et al. Effect of relative humidity on the changes in water and texture of kyoho grape during storage[J]. Food Science,2014,35(22):340−345. doi: 10.7506/spkx1002-6630-201422066
    [7]
    孙世鹏, 彭俊, 李瑞, 等, Vázquez-Arellano MANUEL, 傅隆生. 基于近红外高光谱图像的冬枣损伤早期检测[J]. 食品科学,2017,38(2):301−305. [SUN Shipeng, PENG Jun, LI Rui, et al. Early detection of mechanical damage in chinese winter Jujube (Zizyphus jujuba Mill. cv. Dongzao) using NIR hyperspectral images[J]. Food Science,2017,38(2):301−305. doi: 10.7506/spkx1002-6630-201702047
    [8]
    冯迪, 纪建伟, 张莉, 等. 基于高光谱成像提取苹果糖度与硬度最佳波长[J]. 发光学报,2017,38(6):799−806. [FENG Di, JI Jianwei, ZHANG Li, et al. Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging[J]. Chinese Journal of Luminescence,2017,38(6):799−806. doi: 10.3788/fgxb20173806.0799
    [9]
    何嘉琳, 乔春燕, 李冬冬, 等. 可见-近红外高光谱成像技术对灵武长枣VC含量的无损检测方法[J]. 食品科学,2018,39(6):194−199. [HE Jialin, QIAO Chunyan, LI Dongdong, et al. Non-destructive detection of vitamin C content in ''Lingwu Changzao'' Jujubes (Zizyphus jujuba Mill. cv. Lingwu Changzao) using visible near infrared hyperspectral imaging[J]. Food Science,2018,39(6):194−199. doi: 10.7506/spkx1002-6630-201806031
    [10]
    李江波, 彭彦昆, 陈立平, 等. 近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定[J]. 光谱学与光谱分析,2014,34(5):1264−1269. [LI Jiangbo, PENG Yankun, CHEN Liping, et al. Near-Infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in ''Ya'' pear[J]. Spectroscopy and Spectral Analysis,2014,34(5):1264−1269. doi: 10.3964/j.issn.1000-0593(2014)05-1264-06
    [11]
    潘磊庆, 方莉, 周彬静, 等. 光学参数测量系统和原理及其在果蔬品质检测方面的研究进展[J]. 南京农业大学学报,2021,44(3):401−411. [PAN Leiqing, FANG Li, ZHOU Binjing, et al. System and principle of optical properties measurement and advances on quality detection of fruits and vegetables[J]. Journal of Nanjing Agricultural University,2021,44(3):401−411. doi: 10.7685/jnau.202007009
    [12]
    卢伟, 蔡苗苗, 张强, 等. 高光谱和集成学习的黑枸杞快速分级方法[J]. 光谱学与光谱分析,2021,41(7):2196−2204. [LI LU Wei, CAI Miaomiao, ZHANG Qiang, et al. Fast classification method of black Goji berry (Lycium Ruthenicum Murr.) based on hyperspectral and ensemble learning[J]. Spectroscopy and Spectral Analysis,2021,41(7):2196−2204.
    [13]
    刘燕德, 徐海, 孙旭东, 等. 不同产地苹果糖度可见近红外光谱在线检测[J]. 中国光学,2020,13(3):482−491. [LIU Yande, XU Hai, SUN Xudong, et al. On-line detection of soluble solids content of apples from different origins by visible and near-infrared spectroscopy[J]. Chinese Optics,2020,13(3):482−491.
    [14]
    王转卫, 迟茜, 郭文川, 赵春江. 基于近红外光谱技术的发育后期苹果内部品质检测[J]. 农业机械学报,2018,49(5):348−354. [WANG Zhuanwei, CHI Qian, GUO Wenchuan, et al. Internal quality detection of apples during late developmental period based on Near-infrared spectral technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):348−354. doi: 10.6041/j.issn.1000-1298.2018.05.041
    [15]
    罗一甲, 祝赫, 李潇涵, 等. 赤霞珠酿酒葡萄总酚含量的近红外光谱定量分析[J]. 光谱学与光谱分析,2021,41(7):2036−2042. [LUO Yijia, ZHU He, LI Xiaohan, et al. Quantitative analysis of quantitative analysis of total phenol content in cabernet sauvignon grape based Near-Infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(7):2036−2042.
    [16]
    MZA B, BO Z, HAO L, et al. Determination of bagged 'Fuji' apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm-ScienceDirect[J]. Infrared Physics & Technology,2020:111.
    [17]
    BYUN S. Design of an integrated near-infrared spectroscopy module for sugar content estimation of apples[J]. Micromachines,2022,4(13):2−14.
    [18]
    肖慧, 孙柯, 屠康, 等. 便携式葡萄专用可见-近红外光谱检测仪器开发与实验[J]. 食品科学,2019,40(8):300−305. [XIAO Hui, SUN Ke, TU Kang, et al. Development and application of a specialized portable visible and Near-Infrared instrument for grape quality detection[J]. Food Science,2019,40(8):300−305. doi: 10.7506/spkx1002-6630-20171124-305
    [19]
    COSTA D, MESA N, FREIRE M S, et al. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy[J]. Postharvest Biology and Technology,2019,150:166−178. doi: 10.1016/j.postharvbio.2018.12.010
    [20]
    LUO Y, DONG J, SHI X, et al. Quantitative detection of soluble solids content, pH, and total phenol in Cabernet Sauvignon grapes based on near infrared spectroscopy[J]. International Journal of Food Engineering, 2021, 17(5).
    [21]
    胡静, 黄金发, 刘小丹, 等. 基于近红外光谱技术的猕猴桃品质检测研究进展[J]. 食品研究与开发,2022,43(2):196−201. [HU Jing, HUANG Jinfa, LIU Xiaodan, et al. Progress in research into kiwifruit quality assessment based on near-infrared spectroscopy[J]. Food Research and Development,2022,43(2):196−201.
    [22]
    李艳秋, 马川兰. 现代近红外光谱分析在食品检测中的应用[J]. 现代食品,2021(8):157−159. [LI Yanqiu, MA Chuanlan, LIU Xiaodan. Application of modern near infrared spectroscopy in food detection[J]. Modern Food,2021(8):157−159. doi: 10.16736/j.cnki.cn41-1434/ts.2021.08.043
    [23]
    张静, 徐阳, 姜彦武, 等. 近红外光谱技术在葡萄及其制品品质检测中的应用研究进展[J]. 光谱学与光谱分析,2021,41(12):3653−3659. [ZHANG Jing, XU Yang, JIANG Yanwu, et al. Recent advances in application of Near-Infrared spectroscopy for quality detections of grapes and grape Products[J]. Spectroscopy and Spectral Analysis,2021,41(12):3653−3659.
    [24]
    ARAZURI S, JARÉN C, ARANA JI. Selection of the temperature in the sugar content determination of kiwi fruit[J]. International Journal of Infrared and Millimeter Waves,2005,26:607−616. doi: 10.1007/s10762-005-4076-8
    [25]
    BOBELYN E, SERBAN A S, NICU M, et al. Postharvest quality of apple predicted by nir-spectroscopy: Study of the effect of biological variability on spectra and model performance[J]. Postharvest Biology & Technology,2010,55:133−143.
    [26]
    IGNAT T, LURIE S, NYASORDZI J, et al. Forecast of apple internal quality indices at harvest and during storage by vis-nir spectroscopy[J]. Food & Bioprocess Technology,2014,7:2951−2961.
    [27]
    MUHAMMAD A, ZOU X, ELRASHEID T H, et al. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.)[J]. Journal of Food Measurement and Characterization,2018,12:2366−2376. doi: 10.1007/s11694-018-9853-x
    [28]
    AMODIO M L, CEGLIE F, CHAUDHRY M, et al. Potential of NIR spectroscopy for predicting internal quality and discriminating among strawberry fruits from different production systems[J]. Postharvest Biology and Technology,2017,125:112−121. doi: 10.1016/j.postharvbio.2016.11.013
    [29]
    焦俊, 圣阳, 王标, 等. 光谱技术在核桃检测领域的研究进展[J]. 激光与光电子学进展,2021,58(22):44−54. [JIAO Jun, SHENG Yang, WANG Biao, et al. Research progress on spectroscopy in walnut detection[J]. Laser & Optoelectronics Progress,2021,58(22):44−54.
    [30]
    赵杰文, 毕夏坤, 林颢, 等. 鸡蛋新鲜度的可见-近红外透射光谱快速识别[J]. 激光与光电子学进展,2013,50(5):213−220. [ZHAO Jiewen, BI Xiakun, LIN Hao, et al. Visible-Near-Infrared transmission spectra for rapid analysis of the freshness of eggs[J]. Laser & Optoelectronics Progress,2013,50(5):213−220.
    [31]
    高升, 王巧华. 基于可见/近红外透射光谱技术的红提糖度和含水率无损检测[J]. 中国光学,2021,14(3):566−577. [GAO Sheng, WANG Qiaohua. Non-destructive testing of red globe grape sugar content and moisture content based on visible/near infrared spectroscopy transmission technology[J]. Chinese Optics,2021,14(3):566−577. doi: 10.37188/CO.2020-0085
    [32]
    陈远哲, 王巧华, 高升, 等. 基于近红外光谱的淡水鱼贮藏期质构品质的无损检测模型[J]. 激光与光电子学进展,2021,58(12):507−515. [CHEN Yuanzhe, WANG Qiaohua, GAO Sheng, et al. Nondestructive testing model for textural quality of freshwater fish in storage using Near-Infrared spectroscopy[J]. Laser & Optoelectronics Progress,2021,58(12):507−515.
    [33]
    LIU D, SUN D W, ZNEG X A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry[J]. Food and Bioprocess Technology,2014,7:307−323. doi: 10.1007/s11947-013-1193-6
  • Cited by

    Periodical cited type(10)

    1. 严辉,郭盛,张振宇,赵秋龙,周桂生,杨健,段金廒. 药食两用资源姜的产业发展现状与提质增效策略. 中国中药杂志. 2024(11): 2853-2862 .
    2. 吴萍,蒯梦妮,李乐,张志国,周逸群. 干姜化学成分和药理作用研究进展. 亚太传统医药. 2024(11): 242-246 .
    3. 黄韵霖,谭凯燕,雷向荣,蒋才斌. ICP-MS法测定姜中铅含量及其污染评价与膳食风险评估. 现代食品. 2023(09): 198-201 .
    4. 郭杰,蒋姗,王悦,樊佳,刘晓谦,闫利华,王智民,匡艳辉,王德勤,罗文英. 经典名方中生姜的本草考证及其质量评价. 中国实验方剂学杂志. 2022(02): 27-37 .
    5. 陈巧. 嫩姜和老姜中重金属铅元素和6种农药残留检测及分析. 福建农业科技. 2022(02): 58-62 .
    6. 徐桐,丛竹凤,贺梦媛,董萍,代龙,高鹏. 干姜的研究进展及质量标志物分析. 山东中医杂志. 2022(05): 569-575 .
    7. 黄莉,金凯,蔡嘉洛,戴冰,杨磊,马杰,肖望重. 湘产黄精中24种矿质元素含量测定及主成分分析. 中国药业. 2022(14): 79-83 .
    8. 余代鑫,郭盛,张霞,严辉,张振宇,李海洋,杨健,段金廒. 近红外光谱技术结合化学计量学和机器学习算法的干姜产地溯源研究. 中国中药杂志. 2022(17): 4583-4592 .
    9. 贾妙婷,孙天雄,汪莉,冯慧敏,李玥,强正泽,何军刚,陈晖,李成义. 不同生长期红芪无机元素动态特征探究. 中成药. 2021(05): 1249-1252 .
    10. 贾妙婷,孙天雄,汪莉,冯慧敏,李玥,强正泽,何军刚,王明伟,李成义. 基于熵权TOPSIS模型的无机元素对红芪品质影响的综合评价. 时珍国医国药. 2021(08): 1980-1983 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (193) PDF downloads (28) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return