QU Min, CHEN Qiang, SUN Bingyu, et al. Advances in Studies on the Functional Properties of Polyphenols and Their Interactions with Proteins and Polysaccharides [J]. Science and Technology of Food Industry, 2021, 42(11): 405−413. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070358.
Citation: QU Min, CHEN Qiang, SUN Bingyu, et al. Advances in Studies on the Functional Properties of Polyphenols and Their Interactions with Proteins and Polysaccharides [J]. Science and Technology of Food Industry, 2021, 42(11): 405−413. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070358.

Advances in Studies on the Functional Properties of Polyphenols and Their Interactions with Proteins and Polysaccharides

More Information
  • Received Date: July 28, 2020
  • Available Online: April 08, 2021
  • Polyphenols are polyphase molecular groups with a variety of chemical structures. They have strong antioxidant and antibacterial properties as well as the ability to prevent chronic diseases. They have a wide range of application values in the food and medical fields.The application of polyphenols in functional foods has been limited due to its poor chemical stability and low bioavailability due to its multiple phenolic hydroxyl groups.Protein, polyphenol and polysaccharide compound formed by the interaction of structure can effectively improve quality of the food and the functional features of the biological macromolecules. In this paper, the relationship between the structure and function of polyphenols, the interaction mechanism of polyphenols with protein and polysaccharide, the effect of polyphenols on their functional properties and the improvement of emulsion properties are reviewed, in order to provide theoretical reference for the application of polyphenols in food industry.
  • [1]
    白晓琳, 樊梓鸾, 李璐, 等. 多酚类化合物与其他活性物质协同作用研究进展[J]. 食品工业科技,2019,40(6):308−311.
    [2]
    Susan O, Orazio V, Gluseppe C, et al. Enhacing the therapeutic effects of polyphenols with macromolecules[J]. Articla in Polymer Chemistry,2016,7(8):1529−1544. doi: 10.1039/C5PY01912E
    [3]
    Haroon K, Antoni S, Tarun B, et al. Polyphenols in the treatment of autoimmune diseases[J]. Autoimmunity Reviews,2019,18(7):647−657. doi: 10.1016/j.autrev.2019.05.001
    [4]
    Izlia J, Arroyo-Maya, José C, et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins[J]. Food Chemistry,2016,213(15):431−439.
    [5]
    刘夫国, 马翠翠, 王迪, 等. 蛋白质与多酚相互作用研究进展[J]. 食品与发酵工业,2016,42(2):282−288.
    [6]
    Amin S, Alaa E A B, Pouya S. Polyphenol uses in biomaterials engineering[J]. Biomaterials,2018,167:91−106. doi: 10.1016/j.biomaterials.2018.03.018
    [7]
    Tarun B, Hari P D, Hanaa A, et al. Phytopharmacology of acerola (Malpighia spp.) and its potential as functional food[J]. Trends in Food Science & Technology,2018,74:99−106.
    [8]
    Olagaray K E, Bradford B J. Plant flavonoids to improve productivity of ruminants-A review[J]. Animal Feed Science and Technology,2019,251:21−36. doi: 10.1016/j.anifeedsci.2019.02.004
    [9]
    Rita M, Xiaomei L, Jaslyn J, et al. Sustainable production of natural phenolics for functional food applications[J]. Journal of Functional Foods,2019,57:233−254. doi: 10.1016/j.jff.2019.04.008
    [10]
    Nimse S B, Dilipkumar P. Free radical, natural antioxidant and their reaction mechanisms[J]. RSC Adv,2015,5(35):27986−28006. doi: 10.1039/C4RA13315C
    [11]
    Bhutto A A, Şaban K, Sherazi S T H, et al. Quantitative structure—activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles[J]. Talanta,2018,189:174−181. doi: 10.1016/j.talanta.2018.06.080
    [12]
    Shiwangni R, Abishek B, Chinkwo K A, et al. Q-TOF LC/MS identification and UHPLC-Online ABTS antioxidant activity guided mapping of barley polyphenols[J]. Food Chemistry,2018,266:323−328. doi: 10.1016/j.foodchem.2018.06.011
    [13]
    Zhaoming Y, Yinzhao Z, Yehui D, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition,2020,2(6):115−123.
    [14]
    S P J Namal Senanayake. Green tea extract: Chemistry, antioxidant properties and food applications-A review[J]. Journal of Functional Foods,2013,5(4):1529−1541. doi: 10.1016/j.jff.2013.08.011
    [15]
    Schaich K M, Tian X, Xie J. Hurdles and pitfalls in measuring antioxidant efficacy: A criticalevaluation of ABTS, DPPH, and ORAC assays[J]. Journal of Functional Foods,2015,14:111−125. doi: 10.1016/j.jff.2015.01.043
    [16]
    Jurga B, Dalia M K. The role of catechins in cellular responses to oxidative stress[J]. Molecules,2018,20(4):965−976.
    [17]
    范金波, 蔡茜彤, 冯叙桥, 等. 5种天然多酚类化合物抗氧化活性的比较[J]. 食品与发酵工业,2014,40(7):77−83.
    [18]
    刘科海, 聂挺, 潘栋梁, 等. 量子化学计算研究4种黄酮类天然抗氧化物清除自由基活性的构效关系[J]. 南昌大学学报,2016,40(3):251−256.
    [19]
    籍宝霞. 多酚量子化学精度计算及抗氧化构效模型建立[J]. 食品科学,2009,13(30):153−156.
    [20]
    Stefan P, Alexandra M S, Theresia T, et al. Resveratrol and other dietary polyphenols are inhibitors of estrogen metabolism in human breast cancer cells[J]. The Journal of Steroid Biochemistry and Molecular Biology,2019,190:11−18. doi: 10.1016/j.jsbmb.2019.03.001
    [21]
    Oyenihi A B, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success?[J]. Journal of Ethnopharmacology,2019,229:54−72. doi: 10.1016/j.jep.2018.09.037
    [22]
    Juan J Y, Hang Q, Yun Z W, et al. Study on antitumor, antioxidant and immunoregulatory activities of the purified polyphenols from pinecone of Pinus koraiensis on tumor-bearing S180 micein vivo[J]. International Journal of Biological Macromolecules,2017,94:735−744. doi: 10.1016/j.ijbiomac.2016.10.071
    [23]
    Kessel D, Oleinick N L. Cell death pathways associated with photodynamic therapy: An update[J]. Photochemistry and Photobiology, 2018, 94(2): 213-218.
    [24]
    Tairine Z L, Fabio R M, Antonio C T, et al. Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells[J], Biomedicine & Pharmacotherapy, 2020, 123: 109794.
    [25]
    Pradeep S N. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application[J]. International Journal of Food Microbiology,2012,156(1):7−17. doi: 10.1016/j.ijfoodmicro.2012.03.006
    [26]
    Ignacio G R, Javier F, Felipe L, et al. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols[J]. International Journal of Antimicrobial Agents,2018,52(3):309−3015. doi: 10.1016/j.ijantimicag.2018.04.024
    [27]
    Jatinder P S, Amritpal K, Narpinder S, et al. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols[J]. LWT-Food Science and Technology,2016,65:1025−1030. doi: 10.1016/j.lwt.2015.09.038
    [28]
    Bei J, Xiaosong Z, Yuan L, et al. Physicochemical stability and antioxidant activity of soy protein/pectin/tea polyphenol ternary nanoparticles obtained by photocatalysis[J]. International Journal of Biological Macromolecules,2018,116:1−7. doi: 10.1016/j.ijbiomac.2018.04.164
    [29]
    Nassim S A, Khodir M, Sabah A, et al. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions[J]. Pharma Nutrition,2019,7:100142. doi: 10.1016/j.phanu.2019.100142
    [30]
    Tugba O, Esra C, Filiz A, et al. A review on protein-phenolic interactions and associated changes[J]. Food Research International,2013,51(2):954−970. doi: 10.1016/j.foodres.2013.02.009
    [31]
    Curcio M, Puoci F, Lemma F, et al. Covalent insertion of antioxidant molecules on chitosan by a free radicals grafting procedure[J]. Journal of Agricultural and Food Chemistry,2009,13(13):5933−5938.
    [32]
    Allen E, Foegeding N P, Margaret S, et al. Protein-polyphenol particles for delivering structural and health functionality[J]. Food Hydrocolloids,2017,72:163−173. doi: 10.1016/j.foodhyd.2017.05.024
    [33]
    Fuguo L, Cuixia S, Wei Y, et al. Structural characterization and functional evaluation of lactoferrin-polyphenol conjugates formed by free-radical graft copolymerization[J]. RSC Advances,2015,5(20):15641−15651. doi: 10.1039/C4RA10802G
    [34]
    Luping G, Peng N, Chang C, et al. Fabrication of surface-active antioxidant food biopolymers: Conjugation of catechin polymers to egg white proteins[J]. Food Biophysics,2017,12(2):198−210. doi: 10.1007/s11483-017-9476-5
    [35]
    Tao F, Jiang H, Chen W, et al. Covalent modification of soy protein isolate by (-)-epigallocatechin-3-gallate: Effects on structural and emulsifying properties[J]. SCI Food Agric,2018,98(15):5683−5689. doi: 10.1002/jsfa.9114
    [36]
    Xiaonan S, Hongbo S, Baokun Q, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2018,245:871−878. doi: 10.1016/j.foodchem.2017.11.090
    [37]
    Lianzhou J, Yingjie L, Liang Li, et al. Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features andin vitro gastrointestinal digestion fate[J]. Food Research International,2019,120:603−609.
    [38]
    Chen Y, Jiang S, Chen Q, et al. Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidized tannic acid and oxidized chlorogenic acid[J]. Process Biochemistry,2019,79:105−113. doi: 10.1016/j.procbio.2018.12.026
    [39]
    Sivan I O, Ayelet F. Crosslinking of food proteins mediated by oxidative enzymes-A review[J]. Trends in Food Science & Technology,2018,72:134−143.
    [40]
    Tanga D, Cirkovic V, Gragana J, et al. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):82−103. doi: 10.1111/1541-4337.12320
    [41]
    贾潇, 赵谋明, 贾春晓, 等. 漆酶催化大米蛋白与阿魏酸交联及其结构和抗氧化活性的变化[J]. 现代食品科技,2016,11(32):98−105.
    [42]
    Szymon S, Maksim I, Mateusz K, et al. Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin, colloids and surfaces B[J]. Biointerfaces,2014,123:623−628. doi: 10.1016/j.colsurfb.2014.10.004
    [43]
    Fang R, Ruifang H, Xia W, et al. Bovine serum albumin nanoparticle promotes the stability of quercetin in simulated intestinal fluid[J]. Journal of Agricultural and Food Chemistry,2011,59(11):6292−6298. doi: 10.1021/jf200718j
    [44]
    Mehdi M, Maryam S, Shima M, et al. Fabrication of curcumin-loaded whey protein microgels: Structural properties, antioxidant activity, andin vitro release behavior[J]. LWT,2019,103:94−100. doi: 10.1016/j.lwt.2018.12.076
    [45]
    Cheryl C, Thananunt R, William Mi, et al. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation[J]. Food Research International,2015,76:761−768. doi: 10.1016/j.foodres.2015.07.003
    [46]
    Wang X, Zhang J, Lei F, et al. Covalent complexationand functional evaluation of (-)-epigallocatechin gallate and α-lactalbumin[J]. Food Chemistry,2014,150:341−347. doi: 10.1016/j.foodchem.2013.09.127
    [47]
    Dubeau S, Samson G, Tajmir-Riahi H A, et al. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas[J]. Food Chemistry,2010,122(3):539−545. doi: 10.1016/j.foodchem.2010.03.005
    [48]
    Jianfei Z, Dongxian Z, Haiyan T, et al. Structure relationship of non-covalent interactions between phenolic acids and arabinan-rich pectic polysaccharides from rapeseed meal[J]. International Journal of Biological Macromolecules,2018,120:2597−2603. doi: 10.1016/j.ijbiomac.2018.09.036
    [49]
    Binghua S, Yaoqi T, Long C, et al. Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin[J]. Food Hydrocolloids,2018,77:911−920. doi: 10.1016/j.foodhyd.2017.11.038
    [50]
    Zhang D, Zhu J, Fayin Y, et al. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal[J]. International Journal of Biological Macromolecules,2017,103:307−315. doi: 10.1016/j.ijbiomac.2017.05.053
    [51]
    Watrelot A A, Bourvellec C L, Imberty A, et al. Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J]. Biomacromolecules,2013,14(3):709−718. doi: 10.1021/bm301796y
    [52]
    David Julian McClements. Non-covalent interactions between proteins and polysaccharides[J]. Biotechnology Advances,2006,24:621−625. doi: 10.1016/j.biotechadv.2006.07.003
    [53]
    Catherine M G, Renard C, Watrelot A A, et al. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion[J]. Trends in Food Science & Technology,2017,60:43−51.
    [54]
    Chen Y, Bingyi W, Jianming W, et al. Effect of pyrogallic acid (1, 2, 3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate[J]. LWT,2019,109:443−449. doi: 10.1016/j.lwt.2019.04.034
    [55]
    Gaurav R, Barry F, Nissreen A G, et al. Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD-ESI-MS/MS[J]. Innovative Food Science & Emerging Technologies,2016,37:261−268.
    [56]
    Fuguo L, Cuicui M, David J M, et al. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions[J]. Food Hydrocolloids,2016,61:578−588. doi: 10.1016/j.foodhyd.2016.05.031
    [57]
    Sabrine S, Abdelkarim B, Veronique B M, et al. Polyphenolic-protein-polysaccharide ternary conjugates fromCystoseira barbata Tunisian seaweed as potential biopreservatives: Chemical, antioxidant and antimicrobial properties[J]. International Journal of Biological Macromolecules,2017,105:1375−1383. doi: 10.1016/j.ijbiomac.2017.08.007
    [58]
    Boulet J C, Corinne T, Souquet J M, et al. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency[J]. Food Chemistry,2016,190:357−363. doi: 10.1016/j.foodchem.2015.05.062
    [59]
    Rodriguez S D, Staszewski M V, Pilosof A M R, et al. Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior[J]. Food Hydrocolloids,2015,50:108−115. doi: 10.1016/j.foodhyd.2015.04.015
    [60]
    Weiyi H, Haoxie X, Yuqin L, et al. Function, digestibility and allergenicity assessment of ovalbumin-EGCG conjugates[J]. Journal of Functional Foods,2019,61:103490. doi: 10.1016/j.jff.2019.103490
    [61]
    刘英杰, 陈红宇, 李子微, 等. 花青素共价交联大豆蛋白对其表面疏水性及功能性的影响[J]. 食品工业科技,2019,40(7):5−10.
    [62]
    Morfo Z, Brent S M, Stewart J, et al. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein[J]. Journal of Colloid and Interface Science,2019,548:88−99. doi: 10.1016/j.jcis.2019.04.010
    [63]
    Mariana S, Federico L, Ruiz A L T G, et al. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity[J]. Journal of Functional Foods,2012,4(4):800−809. doi: 10.1016/j.jff.2012.05.008
    [64]
    Cura D E, Lille M, Partanen R, et al. Effect ofTrichoderma reesei tyrosinase on rheology and microstructure of acidified milk gels[J]. International Dairy Journal,2010,20:830−837. doi: 10.1016/j.idairyj.2010.06.008
    [65]
    Mariana S V M, Pizones R H, Pilosof A M R, et al. Green tea polyphenols-b-lactoglobulin nanocomplexes: Interfacial behavior, emulsification and oxidation stability of fish oil[J]. Food Hydrocolloids,2014,35:505−511. doi: 10.1016/j.foodhyd.2013.07.008
  • Related Articles

    [1]ZHAO Yuhan, WANG Han, ZHANG Yu, YE Penghao, LIU Xiaoqing, LIU Chengzhen. Research Progress of Bio-based Biodegradable Antibacterial Food Packaging Films[J]. Science and Technology of Food Industry, 2024, 45(6): 362-371. DOI: 10.13386/j.issn1002-0306.2023040121
    [2]SUN Pengyuan, CAO Chuan'ai, LIU Qian, KONG Baohua, WANG Hui. Research Progress of Intelligent Indication Packaging Based on Chitosan and its Application in Food Storage: A Review[J]. Science and Technology of Food Industry, 2023, 44(10): 416-422. DOI: 10.13386/j.issn1002-0306.2022070144
    [3]WU Juan, WU Jie, LIN Lin, CUI Haiying. Research Progress on Application of Nisin in Food Storage and Preservation Based on Patent Analysis[J]. Science and Technology of Food Industry, 2023, 44(3): 11-18. DOI: 10.13386/j.issn1002-0306.2022070385
    [4]WANG Mengru, QIAO Haiyan, KE Mengyu, DAI Yuxi, LI Meng, QIN Tai, YU Hang, XIE Yunfei, YAO Weirong. The Antibacterial Effect of Plant-originated Essential Oils on Food Preservation and Its Application on Packaging[J]. Science and Technology of Food Industry, 2022, 43(7): 439-444. DOI: 10.13386/j.issn1002-0306.2021040037
    [5]SHENG Huadong, WANG Jian, ZHANG Shuifeng, PAN Xiangjie, FENG Tingting, LI Guangzu. Determination of Six Quaternary Ammonium Bacteriostatic Agents in Food Contact Paper by Dispersive Solid Phase Extraction Combined with High Performance Liquid Chromatography-tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(6): 271-275,317. DOI: 10.13386/j.issn1002-0306.2020050167
    [6]WANG Jiayu, HU Wenzhong, GUAN Yuge, YU Jiaoxue, ZHAO Manru. Research Progress on the Bacteriostatic Mechanism of Nisin and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(3): 346-350. DOI: 10.13386/j.issn1002-0306.2020040214
    [7]JIA Jun-hao, CAO Ding, CHEN Mian-hua, ZHAO Pei-jing, MING Fei-ping, LIANG Qian-yi, LI Jia-yi, FAN Qin, DENG Jin-bo, ZHANG Shu-xia, MA Miao-peng, ZHANG Ling-hua. Expression of Plectasin Gene in Clostridium butyricum[J]. Science and Technology of Food Industry, 2020, 41(18): 105-109,122. DOI: 10.13386/j.issn1002-0306.2020.18.017
    [8]YU Zi-yue, CHEN Fei, DONG Wei-jie, DU Juan. Antibacterial Mechanism of Nano-silver and Its Research Progress in Food Storage[J]. Science and Technology of Food Industry, 2019, 40(19): 305-309. DOI: 10.13386/j.issn1002-0306.2019.19.053
    [9]WANG Fang, CAO Jin-xuan, PAN Dao-dong, SUN Yang-ying, ZHOU Chang-yu, XU Jiao. Bacteriostatic activity and mechanism of cinnamon essential oil against Pantoea agglomerans and Staphylococcus saprophyticus[J]. Science and Technology of Food Industry, 2016, (19): 75-80. DOI: 10.13386/j.issn1002-0306.2016.19.006
    [10]MI Hong-bo, LIU Shuang, LI Xue-peng, LI Jian-rong. Research progress of nature antioxidant in inhibiting lipid oxidation of aquatic product during storage[J]. Science and Technology of Food Industry, 2016, (08): 364-368. DOI: 10.13386/j.issn1002-0306.2016.08.068
  • Cited by

    Periodical cited type(6)

    1. 李瞻君,张晓栋,龙碧秀,曹云,侯旭杰. 香梨慕萨莱思产品研发及响应面优化研究. 农产品加工. 2025(05): 1-10 .
    2. 马懿,喻康杰,赖晓琴,肖雄峻,熊蓉,谢李明,魏紫云,黄慧玲. 单宁添加对赤霞珠葡萄酒颜色和花色苷含量变化的影响及其相关性研究. 食品工业科技. 2024(05): 81-88 . 本站查看
    3. 魏昭,梁勃,靳雅楠,赵旭峰,刘金龙,王权. 原材料和加工工艺对发酵梨酒品质的影响. 食品科技. 2024(01): 78-83 .
    4. 徐瑞,杨文琳,贺林芝. 二氢杨梅素对滩羊肌原纤维蛋白抗氧化性和乳化性的影响. 食品安全导刊. 2024(17): 91-95+99 .
    5. 马懿,喻康杰,赖晓琴,肖雄峻,谢李明,熊蓉,魏紫云,禹潇. 不同种类单宁对赤霞珠葡萄酒品质及风味感官的影响. 食品研究与开发. 2024(21): 25-33 .
    6. 邓乔允,夏爽,韩小雨,游义琳,黄卫东,战吉宬. 梨酒中酵母的研究进展. 食品与发酵工业. 2024(21): 349-356 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1683) PDF downloads (164) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return