Citation: | ZHAO Yuhan, WANG Han, ZHANG Yu, et al. Research Progress of Bio-based Biodegradable Antibacterial Food Packaging Films[J]. Science and Technology of Food Industry, 2024, 45(6): 362−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040121. |
[1] |
张雅洁. 塑料污染的归因分析及法律规制研究—评《中国塑料污染治理理念与实践》[J]. 塑料工业,2022,50(9):202. [ZHANG Y J. Attribution analysis and legal regulation of plastic pollution:Comments on the concept and practice of plastic pollution control in china[J]. Plastics Industry,2022,50(9):202.]
|
[2] |
CHEN W Z, MA S B, WANG Q K, et al. Fortification of edible films with bioactive agents:A review of their formation, properties, and application in food preservation[J]. Critical Reviews in Food Science and Nutrition,2021,62(18):5029−5055.
|
[3] |
GUO C Y, GUO H G. Progress in the degradability of biodegradable film materials for packaging[J]. Membranes,2022,12(5):500. doi: 10.3390/membranes12050500
|
[4] |
MOTELICA L, FICAI D, FICAI A, et al. Biodegradable antimicrobial food packaging:Trends and perspectives[J]. Foods,2020,9(10):1438. doi: 10.3390/foods9101438
|
[5] |
ZHAO Y, AN J J, SU H X, et al. Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents:A sustainable path[J]. Food Research International,2022,155:111096. doi: 10.1016/j.foodres.2022.111096
|
[6] |
NESIC A, CABRERA-BARJAS G, DIMITRIJEVIC-BRANKOVIC S, et al. Prospect of polysaccharide-based materials as advanced food packaging[J]. Molecules,2019,25(1):135. doi: 10.3390/molecules25010135
|
[7] |
PÉREZ-VERGARA L D, CIFUENTES M T, FRANCO A P, et al. Development and characterization of edible films based on native cassava starch, beeswax, and propolis[J]. NFS Journal,2020,21:39−49. doi: 10.1016/j.nfs.2020.09.002
|
[8] |
FAKHOURI F M, MARTELLI S M, CAON T, et al. Edible films and coatings based on starch/gelatin:Film properties and effect of coatings on quality of refrigerated Red Crimson grapes[J]. Postharvest Biology and Technology,2015,109:57−64. doi: 10.1016/j.postharvbio.2015.05.015
|
[9] |
TONGDEESOONTORN W, MAUER L J, WONGRUONG S, et al. Antioxidant films from cassava starch/gelatin biocomposite fortified with quercetin and TBHQ and their applications in food models[J]. Polymers,2021,13(7):1117. doi: 10.3390/polym13071117
|
[10] |
LEI Y L, WU H J, JIAO C, et al. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol[J]. Food Hydrocolloids,2019,94:128−135. doi: 10.1016/j.foodhyd.2019.03.011
|
[11] |
GALUS S, LENART A. Development and characterization of composite edible films based on sodium alginate and pectin[J]. Journal of Food Engineering,2013,115(4):459−465. doi: 10.1016/j.jfoodeng.2012.03.006
|
[12] |
MANNOZZI C, CECCHINI J P, TYLEWICZ U, et al. Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life[J]. LWT-Food Science and Technology,2016,85:440−444.
|
[13] |
NSENGIYUMVA E M, ALEXANDRIDIS P. Xanthan gum in aqueous solutions:Fundamentals and applications[J]. International Journal of Biological Macromolecules,2022,216:583−604. doi: 10.1016/j.ijbiomac.2022.06.189
|
[14] |
LI F, ZHE T T, MA K X, et al. A naturally derived nanocomposite film with photodynamic antibacterial activity:New prospect for sustainable food packaging[J]. ACS Appl Mater Interfaces,2021,13(44):52998−53008. doi: 10.1021/acsami.1c12243
|
[15] |
ZABIHOLLAHI N, ALIZADEH A, ALMASI H, et al. Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension[J]. Int J Biol Macromol,2020,160:409−417. doi: 10.1016/j.ijbiomac.2020.05.066
|
[16] |
TESFAY S Z, MAGWAZA L S, MBILI N, et al. Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado ( Persea americana Mill.) fruit[J]. Scientia Horticulturae,2017,226:201−217. doi: 10.1016/j.scienta.2017.08.047
|
[17] |
刘义武, 刘莹, 谢峰, 等. 果胶/黄原胶共混膜的制备工艺优化与表征[J]. 食品工业科技,2016,37(6):298−301,313. [LIU Y W, LIU Y, XIE F, et, al. Preparation and properties of pectin/xanthan gum blend films[J]. Science and Technology of Food Industry,2016,37(6):298−301,313.]
|
[18] |
ZHENG M, CHEN J, TAN K B, et al. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana[J]. Food Chemistry,2021,374:131794.
|
[19] |
FAN Y L, YANG J, DUAN A B, et al. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package[J]. International Journal of Biological Macromolecules,2021,181:1003−1009. doi: 10.1016/j.ijbiomac.2021.04.111
|
[20] |
WU C H, LI Y Z, DU Y, et al. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging[J]. Food Hydrocolloids,2019,89:682−690. doi: 10.1016/j.foodhyd.2018.11.001
|
[21] |
安瑞琪, 黄建初, 李崇高, 等. 浓缩乳清蛋白/魔芋葡甘聚糖复配蜂蜡膜[J]. 高分子材料科学与工程,2016,32(11):125−129. [AN R Q, HUANG J C, LI C G, et al. Whey protein concentrate/konjac glucomannan composite beeswax membrane[J]. Polymer Materials Science and Engineering,2016,32(11):125−129.]
|
[22] |
YAN Y S, DUAN S Q, ZHANG H L, et al. Preparation and characterization of Konjac glucomannan and pullulan composite films for strawberry preservation[J]. Carbohydrate Polymers,2020,243:116446. doi: 10.1016/j.carbpol.2020.116446
|
[23] |
LIU J, YANG S Q, LI X T, et al. Alginate oligosaccharides:Production, biological activities, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(6):1859−1881. doi: 10.1111/1541-4337.12494
|
[24] |
QIN Y M. Alginate fibres:an overview of the production processes and applications in wound management[J]. Polymer International,2007,57(2):171−180.
|
[25] |
DOU L X, LI B F, ZHANG K, et al. Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols[J]. Int J Biol Macromol,2018,118:1377−1383. doi: 10.1016/j.ijbiomac.2018.06.121
|
[26] |
ALOUI H, DESHMUKH A R, KHOMLAEM C, et al. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties[J]. Food Hydrocolloids,2021,113:106508. doi: 10.1016/j.foodhyd.2020.106508
|
[27] |
ALVES D, MARQUES A, MILHO C, et al. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage[J]. International Journal of Food Microbiology,2019,291:121−127. doi: 10.1016/j.ijfoodmicro.2018.11.026
|
[28] |
CRUZ A I C, COSTA M D C, MAFRA J F, et al. A sodium alginate bilayer coating incorporated with green propolis extract as a powerful tool to extend Colossoma macropomum fillet shelf-life[J]. Food Chem,2021,355:129610. doi: 10.1016/j.foodchem.2021.129610
|
[29] |
ZIMET P, MOMBRÚ Á W, MOMBRÚ D, et al. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films[J]. Carbohydrate Polymers,2019,219:334−343. doi: 10.1016/j.carbpol.2019.05.013
|
[30] |
YANG J, KWON G J, HWANG K, et al. Cellulose-chitosan antibacterial composite films prepared from libr solution[J]. Polymers,2019,10(10):1058.
|
[31] |
NGUYEN T T, DAO U T T, THI B Q P, et al. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract[J]. Progress in Organic Coatings,2020,140:105487. doi: 10.1016/j.porgcoat.2019.105487
|
[32] |
VENKATACHALAM K, LEKJING S. A chitosan-based edible film with clove essential oil and nisin for improving the quality and shelf life of pork patties in cold storage[J]. RSC Adv,2020,10(30):17777−17786. doi: 10.1039/D0RA02986F
|
[33] |
LIN L, MAO X F, SUN Y H, et al. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging[J]. Int J Food Microbiol,2019,292:21−30. doi: 10.1016/j.ijfoodmicro.2018.12.007
|
[34] |
任佳欣, 遇世友, 许锡凯, 等. 可食性蛋白膜在食品包装中的应用研究进展[J]. 食品工业科技,2020,41(9):320−326. [REN J X, YU S Y, XU X K, et al. Research progress on the application of edible protein film in food packaging[J]. Science and Technology of Food Industry,2020,41(9):320−326.]
|
[35] |
MENGXUE D, LIANGJIE T, JIAYU L, et al. Improving physicochemical properties of edible wheat gluten protein films with proteins, polysaccharides and organic acid[J]. LWT-Food Science and Technology,2021,154:112868.
|
[36] |
ZHAO G Y, ZHOU C Y, FAN F Y. Preparation and properties of soy protein isolate/cotton-nanocrystalline cellulose films[J]. International Journal of Polymer Science, 2021:5498136.
|
[37] |
WU T, DAI S D, CONG X, et al. Succinylated soy protein film coating extended the shelf life of apple fruit[J]. Journal of Food Processing and Preservation,2017,41(4):e13024. doi: 10.1111/jfpp.13024
|
[38] |
LU J Y, LI T, MA L, et al. Optimization of heat-sealing properties for antimicrobial soybean protein isolate film incorporating diatomite/thymol complex and its application on blueberry packaging[J]. Food Packaging and Shelf Life,2021,29:100690. doi: 10.1016/j.fpsl.2021.100690
|
[39] |
包俊青, 唐亚丽, 卢立新, 等. 肉桂醛对明胶基肠衣膜的性能影响[J]. 食品科学,2019,40(4):1−6. [BAO J Q, TANG Y L, LU L X, et al. Effect of cinnamaldehyde on the performance of gelatin-based edible casing[J]. Food Science,2019,40(4):1−6.]
|
[40] |
RIAHI Z, PRIYADARSHI R, RHIM J W, et al. Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications[J]. Food Hydrocolloids,2021,112:106314. doi: 10.1016/j.foodhyd.2020.106314
|
[41] |
BERMÚDEZ-ORIA A, RODRÍGUEZ-GUTIÉRREZ G, RUBIO-SENENT F, et al. Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage[J]. Meat Science,2018,148:213−218.
|
[42] |
DEHGHAN T L, KHOSHKHOO Z, AZIZI M H. Application of edible coating made of sturgeon gelatin and Portulaca oleracea extract for improving the shelf life of fish sausages[J]. Journal of Food Measurement and Characterization,2021,15:4306−4313. doi: 10.1007/s11694-021-01013-6
|
[43] |
PICCHIO M L, LINCK Y G, MONTI G A, et al. Casein films crosslinked by tannic acid for food packaging applications[J]. Food Hydrocolloids,2018,84:424−434. doi: 10.1016/j.foodhyd.2018.06.028
|
[44] |
MONTES-DE-OCA-AVALOS J M, ALTAMURA D, CANDAL R J, et al. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films[J]. Food Res Int,2018,105:129−139. doi: 10.1016/j.foodres.2017.11.011
|
[45] |
WANG R, AN N, FENG W, et al. Antibacterial fresh-keeping films assembled by synergistic interplay between casein and shellac[J]. Food Biophysics,2021,17:47−58.
|
[46] |
MOTAMEDI E, NASIRI J, MALIDARREH T R, et al. Performance of carnauba wax-nanoclay emulsion coatings on postharvest quality of ‘Valencia’ orange fruit[J]. Scientia Horticulturae,2018,240:170−178. doi: 10.1016/j.scienta.2018.06.002
|
[47] |
CECCHINI J P, SPOTTI M J, PIAGENTINI A M, et al. Development of edible films obtained from submicron emulsions based on whey protein concentrate, oil/beeswax and brea gum[J]. Food Science and Technology International,2017,23(4):371−381. doi: 10.1177/1082013217695170
|
[48] |
PERDONES Á, VARGAS M, ATARÉS L, et al. Physical, antioxidant and antimicrobial properties of chitosan-cinnamon leaf oil films as affected by oleic acid[J]. Food Hydrocolloids,2014,36:256−264. doi: 10.1016/j.foodhyd.2013.10.003
|
[49] |
SUN L J, YANG S S, QIAN X, et al. High-efficacy and long term antibacterial cellulose material:anchored guanidine polymer via double “click chemistry”[J]. Cellulose,2020,27:8799−8812. doi: 10.1007/s10570-020-03374-5
|
[50] |
CHOI H, KIM K J, LEE D G. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action[J]. Fungal Biology,2017,121(1):53−60. doi: 10.1016/j.funbio.2016.09.001
|
[51] |
WEI D F, WANG H, ZIAEE Z, et al. Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach[J]. Biomaterials Advances,2015,58:986−991.
|
[52] |
WEI W, CHENGRONG Q, WEI L, et al. Design of antibacterial cellulose nanofibril film by the incorporation of guanidine-attached lignin nanoparticles[J]. Cellulose,2022,29:3439−3451. doi: 10.1007/s10570-022-04490-0
|
[53] |
SHANKAR S, TANOMROD N, RAWDKUEN S, et al. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties[J]. International Journal of Biological Macromolecules,2016,92:842−849. doi: 10.1016/j.ijbiomac.2016.07.107
|
[54] |
ARFAT Y A, AHMED J, HIREMATH N, et al. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles[J]. Food Hydrocolloids,2017,62:191−202. doi: 10.1016/j.foodhyd.2016.08.009
|
[55] |
ZHANG X D, XIAO G, WANG Y Q, et al. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications[J]. Carbohydr Polym,2017,169:101−107. doi: 10.1016/j.carbpol.2017.03.073
|
[56] |
ZHOU S Y, JIN T, SHEEN S, et al. Development of sodium chlorite and glucono delta-lactone incorporated PLA film for microbial inactivation on fresh tomato[J]. Food Research International,2020,132:109067. doi: 10.1016/j.foodres.2020.109067
|
[57] |
ZHANG B D, HUANG C X, ZHANG L Y, et al. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangos[J]. J Food Sci Technol,2019,56(3):1095−1103. doi: 10.1007/s13197-019-03636-6
|
[58] |
CHEN K, ZHANG M, BHANDARI B, et al. Edible flower essential oils:A review of chemical compositions, bioactivities, safety and applications in food preservation[J]. Food Res Int,2021,139:109809. doi: 10.1016/j.foodres.2020.109809
|
[59] |
GAO Z P, ZHONG W M, CHEN K Y, et al. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes[J]. Industrial Crops and Products,2020,144:112036. doi: 10.1016/j.indcrop.2019.112036
|
[60] |
GUO J J, GAO Z P, LI G Y, et al. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou Y. B. chang against Listeria monocytogenes[J]. Food Control,2019,105:256−264. doi: 10.1016/j.foodcont.2019.06.014
|
[61] |
ATEF M, REZAEI M, BEHROOZ R. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil[J]. Food Hydrocolloids,2015,45:150−157. doi: 10.1016/j.foodhyd.2014.09.037
|
[62] |
OJAGH S M, REZAEI M, RAZAVI S H, et al. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water[J]. Food Chemistry,2010,122(1):161−166. doi: 10.1016/j.foodchem.2010.02.033
|
[63] |
AZARAKHSH N, OSMAN A, GHAZALI H M, et al. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple[J]. Postharvest Biology and Technology,2014,88:1−7. doi: 10.1016/j.postharvbio.2013.09.004
|
[64] |
DENG H T, ZHU J Y, TONG Y Q, et al. Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli[J]. LWT-Food Science and Technology,2021,150:112018. doi: 10.1016/j.lwt.2021.112018
|
[65] |
SU X C, YANG Z, TAN K B, et al. Preparation and characterization of ethyl cellulose film modified with capsaicin[J]. Carbohydrate Polymers,2020,241:116259. doi: 10.1016/j.carbpol.2020.116259
|
[66] |
BI F Y, ZHANG X, BAI R Y, et al. Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins[J]. Int J Biol Macromol,2019,134:11−19. doi: 10.1016/j.ijbiomac.2019.05.042
|
[67] |
BERTOTTO C, BILCK A P, YAMASHITA F,et al. Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product[J]. LWT-Food Science and Technology,2022,157:113124. doi: 10.1016/j.lwt.2022.113124
|
[68] |
LI Q Y, XU J X, ZHANG D D, et al. Preparation of a bilayer edible film incorporated with lysozyme and its effect on fish spoilage bacteria[J]. Journal of Food Safety,2020,40(5):e12832. doi: 10.1111/jfs.12832
|
[69] |
WANG D L, LÜ R L, MA X B, et al. Lysozyme immobilization on the calcium alginate film under sonication:Development of an antimicrobial film[J]. Food Hydrocolloids,2018,83:1−8. doi: 10.1016/j.foodhyd.2018.04.021
|
[70] |
WU Y H, LI Q, ZHANG X Z, et al. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films[J]. Int J Biol Macromol,2019,128:673−680. doi: 10.1016/j.ijbiomac.2019.01.172
|
[71] |
QUICHABA M B, MOREIRA T F M, DE OLIVEIRA A, et al. Biopreservatives against foodborne bacteria:combined effect of nisin and nanoncapsulated curcumin and co-encapsulation of nisin and curcumin[J]. Journal of Food Science and Technology,2022,60:581−589.
|
[72] |
WENG S, LÓPEZ A, SÁEZ-ORVIZ S, et al. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus[J]. Food Control,2021,121:107666. doi: 10.1016/j.foodcont.2020.107666
|