Processing math: 100%
ZHOU Yali, CUI Lihua, CHEN Jianguang, et al. Extraction of Saponins from Black and White Quinoa and Comparison of Their Antioxidant Activities [J]. Science and Technology of Food Industry, 2021, 42(11): 328−334. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070260.
Citation: ZHOU Yali, CUI Lihua, CHEN Jianguang, et al. Extraction of Saponins from Black and White Quinoa and Comparison of Their Antioxidant Activities [J]. Science and Technology of Food Industry, 2021, 42(11): 328−334. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070260.

Extraction of Saponins from Black and White Quinoa and Comparison of Their Antioxidant Activities

More Information
  • Received Date: July 21, 2020
  • Available Online: April 07, 2021
  • Black and white quinoa seeds were used as materials in this study, and the methanol reflux extraction method was used to extract the total saponins from the quinoa seeds. The total saponins extraction rate was an important indicator, and the saponins content was compared the difference between the black and white quinoa seeds. At the same time, the reduction (Fe3+) ability, the hydroxyl radical (·OH), nitrite ion (NO2), superoxide anion (O2) and 1, 1-Diphenyl-2-picrylhydrazine (DPPH·) scavenging ability were determined to analyze the antioxidant activity of black and white quinoa saponins. The results showed that the saponins content of black quinoa seeds was higher than that of white quinoa seeds, which were 17.37 and 1.89 mg/g, respectively. In addition, the reducing power and antioxidant activity of quinoa increased with the increase of concentration of saponins. Moreover, the reducing power and antioxidant activity of black quinoa seed saponins were higher than those of white quinoa seed saponins. As a contrast, the IC50 values of black quinoa seed saponins for DPPH·, O2, ·OH, NO2 were 0.122, 1.106, 0.514, 0.832 mg/mL, respectively. The IC50 values of white quinoa seed saponins for DPPH·, O2, ·OH, NO2 were 0.210, 5.530, 2.500, 1.569 mg/mL, respectively.
  • [1]
    Jaikishun S, Li W, Yang Z, et al. Quinoa: In perspective of global challenges[J]. Agronomy,2019,9(4):176. doi: 10.3390/agronomy9040176
    [2]
    Escribano J, Cabanes J, Jimenez-Atienzar M, et al. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties[J]. Food Chemistry,2017,234(Nov. 1):285−294.
    [3]
    Abugoch James L E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties[J]. Adv Food Nutr Res,2009,58(09):1−31.
    [4]
    Nowak V, Du J, and Charrondière U R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)[J]. Food Chemistry,2016,193:47−54. doi: 10.1016/j.foodchem.2015.02.111
    [5]
    Stikic, Radmila, Glamoclija, et al. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations[J]. Journal of Cereal Science,2012,55(2):132−138. doi: 10.1016/j.jcs.2011.10.010
    [6]
    Dini I, Tenore G C, and Dini A. Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds[J]. LWT-Food Science and Technology,2010,43(3):447−451. doi: 10.1016/j.lwt.2009.09.010
    [7]
    Pereira E, Encina-Zelada C, Barros L, et al. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food[J]. Food Chemistry,2019,280:110−114. doi: 10.1016/j.foodchem.2018.12.068
    [8]
    Rui H L. Whole grain phytochemicals and health[J]. Journal of Cereal Science,2007,46(3):732−737.
    [9]
    Sharma N. Free radicals antioxidants and disease[J]. Biology & Medicine,2014,6(3):1000214.
    [10]
    Pellegrini M, Lucas-Gonzales R, Ricci A, et al. Chemical, fattyacid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodiumquinoa Willd.) seeds[J]. Industrial Crops and Products,2018,111:38−46. doi: 10.1016/j.indcrop.2017.10.006
    [11]
    Alvarez-Jubete L, Wijngaard H, Arendt E K, et al. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking[J]. Food Chemistry,2010,119(2):770−778. doi: 10.1016/j.foodchem.2009.07.032
    [12]
    Okarter N and Liu R H. Health benefits of whole grain phytochemicals[J]. Critical Reviews in Food Science & Nutrition,2010,50(3):193−208.
    [13]
    Miranda M, Vega-Gálvez A, López J, et al. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.)[J]. Industrial Crops & Products,2010,32(3):258−263.
    [14]
    Tang Y, Li X, Zhang B, et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd genotypes[J]. Food Chemistry,2015,166(166C):380−388.
    [15]
    Dini I, Schettino O, Simioli T, et al. Studies on the constituents of Chenopodium quinoa seeds: Isolation and characterization of new triterpene saponins[J]. Journal of Agricultural & Food Chemistry,2001,49(2):741.
    [16]
    J K M. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd.)[J]. Journal of the ence of Food & Agriculture,2010,54(2):211−219.
    [17]
    Augustin J M, Kuzina V, Andersen S B, et al. Molecular activities, biosynthesis and evolution of triterpenoid saponins[J]. Phytochemistry,2011,72(6):435−457.
    [18]
    Graf B L, Rojas-Silva P, Rojo L E, et al. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.)[J]. Compr Rev Food Sci Food Saf,2015,14(4):431−445. doi: 10.1111/1541-4337.12135
    [19]
    Kuljanabhagavad T and Wink M. Biological activities and chemistry of saponins from Chenopodium quinoa Willd[J]. Phytochemistry Reviews,2009,8(2):473−490. doi: 10.1007/s11101-009-9121-0
    [20]
    Madl T, Sterk H, Mittelbach M, et al. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa[J]. Journal of the American Society for Mass Spectrometry,2006,17(6):795−806. doi: 10.1016/j.jasms.2006.02.013
    [21]
    Yao Y, Yang X, Shi Z, et al. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells[J]. Journal of Food Science,2014,79(5):H1018−H1023. doi: 10.1111/1750-3841.12425
    [22]
    杜静婷, 陈超, 范三红. 响应面法优化藜麦糠皂苷的提取及抗氧化活性[J]. 山西农业科学,2016,44(7):932−937. doi: 10.3969/j.issn.1002-2481.2016.07.10
    [23]
    Yameng Han, Jianwei Chi, Mingwei Zhang, et al. Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa Willd.) during milling process[J]. LWT-Food Science and Technology,2019,114:108381. doi: 10.1016/j.lwt.2019.108381
    [24]
    梁霞, 周柏玲, 刘森, 等. 响应面法优化藜麦总皂苷提取工艺研究[J]. 中国粮油学报,2017(11):40−46. doi: 10.3969/j.issn.1003-0174.2017.11.007
    [25]
    房垚. 藜麦种子皂苷的提取、纯化及其体外抑菌、抗癌活性研究[D]. 长春: 吉林农业大学, 2019.
    [26]
    杨洁, 高凤祥, 杨敏, 等. 藜麦皮总皂苷微波辅助提取工艺及其抗氧化活性研究[J]. 食品与机械,2017,33(12):148−153, 185.
    [27]
    杨端. 藜麦麸皮皂苷超临界CO2萃取工艺优化[J]. 食品研究与开发,2019,40(20):149−154. doi: 10.12161/j.issn.1005-6521.2019.20.027
    [28]
    雷蕾. 藜麦皂苷的分离纯化及皂苷元的制备研究[D]. 西宁: 青海师范大学, 2019.
    [29]
    赵亚东, 党斌, 杨希娟, 等. 青海藜麦皂苷超声提取工艺及抗氧化活性[J]. 食品工业科技,2017,38(19):45−51.
    [30]
    杨小梅, 谷毅鹏, 陈伟玲, 等. 响应面法优化荸荠皮皂苷的提取工艺[J]. 食品工业,2019(10):30−34.
    [31]
    Medina-Meza I G, Aluwi N A, Saunders S R, et al. Profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd.) grown in washington state by GC-MS[J]. Journal Agriculture Food Chemistry,2016,64(45):8583−8591. doi: 10.1021/acs.jafc.6b02156
    [32]
    徐晓敏. 藜麦皂苷的提取、分离纯化及生物活性研究[D]. 呼和浩特: 内蒙古农业大学, 2017.
    [33]
    Hirose Y, Fujita T, Ishii T, et al. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan[J]. Food Chemistry,2010,119(4):1300−1306. doi: 10.1016/j.foodchem.2009.09.008
    [34]
    Smirnoff N and Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1057−1060. doi: 10.1016/0031-9422(89)80182-7
    [35]
    Chen H L, Lan X Z, Wu Y Y, et al. The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd[J]. Biomedicine,2017,7(4):24. doi: 10.1051/bmdcn/2017070424
    [36]
    Nickel J, Spanier L P, Botelho F T, et al. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains[J]. Food Chemistry,2016,209:139−143. doi: 10.1016/j.foodchem.2016.04.031
    [37]
    Park J H, Lee Y J, Kim Y H, et al. Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea[J]. Preventive Nutrition & Food ence,2017,22(3):195−202.
    [38]
    Rocchetti G, Lucini L, Lorenzo Rodriguez J M, et al. Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties[J]. Food Chemistry,2018,271:157−164.
    [39]
    Tang Yao, Zhang Bing, Li Xihong, et al. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects[J]. Journal of Agricultural and Food Chemistry,2016,64(8):1712−1719. doi: 10.1021/acs.jafc.5b05761
    [40]
    Serafino Suriano, Anna Iannucci, Pasquale Codianni, et al. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy[J]. Food Research International,2018,113:221−233. doi: 10.1016/j.foodres.2018.06.072
  • Related Articles

    [1]ZHAO Yuhan, WANG Han, ZHANG Yu, YE Penghao, LIU Xiaoqing, LIU Chengzhen. Research Progress of Bio-based Biodegradable Antibacterial Food Packaging Films[J]. Science and Technology of Food Industry, 2024, 45(6): 362-371. DOI: 10.13386/j.issn1002-0306.2023040121
    [2]SUN Pengyuan, CAO Chuan'ai, LIU Qian, KONG Baohua, WANG Hui. Research Progress of Intelligent Indication Packaging Based on Chitosan and its Application in Food Storage: A Review[J]. Science and Technology of Food Industry, 2023, 44(10): 416-422. DOI: 10.13386/j.issn1002-0306.2022070144
    [3]WU Juan, WU Jie, LIN Lin, CUI Haiying. Research Progress on Application of Nisin in Food Storage and Preservation Based on Patent Analysis[J]. Science and Technology of Food Industry, 2023, 44(3): 11-18. DOI: 10.13386/j.issn1002-0306.2022070385
    [4]WANG Mengru, QIAO Haiyan, KE Mengyu, DAI Yuxi, LI Meng, QIN Tai, YU Hang, XIE Yunfei, YAO Weirong. The Antibacterial Effect of Plant-originated Essential Oils on Food Preservation and Its Application on Packaging[J]. Science and Technology of Food Industry, 2022, 43(7): 439-444. DOI: 10.13386/j.issn1002-0306.2021040037
    [5]SHENG Huadong, WANG Jian, ZHANG Shuifeng, PAN Xiangjie, FENG Tingting, LI Guangzu. Determination of Six Quaternary Ammonium Bacteriostatic Agents in Food Contact Paper by Dispersive Solid Phase Extraction Combined with High Performance Liquid Chromatography-tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(6): 271-275,317. DOI: 10.13386/j.issn1002-0306.2020050167
    [6]WANG Jiayu, HU Wenzhong, GUAN Yuge, YU Jiaoxue, ZHAO Manru. Research Progress on the Bacteriostatic Mechanism of Nisin and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(3): 346-350. DOI: 10.13386/j.issn1002-0306.2020040214
    [7]JIA Jun-hao, CAO Ding, CHEN Mian-hua, ZHAO Pei-jing, MING Fei-ping, LIANG Qian-yi, LI Jia-yi, FAN Qin, DENG Jin-bo, ZHANG Shu-xia, MA Miao-peng, ZHANG Ling-hua. Expression of Plectasin Gene in Clostridium butyricum[J]. Science and Technology of Food Industry, 2020, 41(18): 105-109,122. DOI: 10.13386/j.issn1002-0306.2020.18.017
    [8]YU Zi-yue, CHEN Fei, DONG Wei-jie, DU Juan. Antibacterial Mechanism of Nano-silver and Its Research Progress in Food Storage[J]. Science and Technology of Food Industry, 2019, 40(19): 305-309. DOI: 10.13386/j.issn1002-0306.2019.19.053
    [9]WANG Fang, CAO Jin-xuan, PAN Dao-dong, SUN Yang-ying, ZHOU Chang-yu, XU Jiao. Bacteriostatic activity and mechanism of cinnamon essential oil against Pantoea agglomerans and Staphylococcus saprophyticus[J]. Science and Technology of Food Industry, 2016, (19): 75-80. DOI: 10.13386/j.issn1002-0306.2016.19.006
    [10]MI Hong-bo, LIU Shuang, LI Xue-peng, LI Jian-rong. Research progress of nature antioxidant in inhibiting lipid oxidation of aquatic product during storage[J]. Science and Technology of Food Industry, 2016, (08): 364-368. DOI: 10.13386/j.issn1002-0306.2016.08.068
  • Cited by

    Periodical cited type(6)

    1. 李瞻君,张晓栋,龙碧秀,曹云,侯旭杰. 香梨慕萨莱思产品研发及响应面优化研究. 农产品加工. 2025(05): 1-10 .
    2. 马懿,喻康杰,赖晓琴,肖雄峻,熊蓉,谢李明,魏紫云,黄慧玲. 单宁添加对赤霞珠葡萄酒颜色和花色苷含量变化的影响及其相关性研究. 食品工业科技. 2024(05): 81-88 . 本站查看
    3. 魏昭,梁勃,靳雅楠,赵旭峰,刘金龙,王权. 原材料和加工工艺对发酵梨酒品质的影响. 食品科技. 2024(01): 78-83 .
    4. 徐瑞,杨文琳,贺林芝. 二氢杨梅素对滩羊肌原纤维蛋白抗氧化性和乳化性的影响. 食品安全导刊. 2024(17): 91-95+99 .
    5. 马懿,喻康杰,赖晓琴,肖雄峻,谢李明,熊蓉,魏紫云,禹潇. 不同种类单宁对赤霞珠葡萄酒品质及风味感官的影响. 食品研究与开发. 2024(21): 25-33 .
    6. 邓乔允,夏爽,韩小雨,游义琳,黄卫东,战吉宬. 梨酒中酵母的研究进展. 食品与发酵工业. 2024(21): 349-356 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (373) PDF downloads (56) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return