WANG Tianyi, ZHANG Qingfen, HUANG Leilei, et al. Extraction, Purification and Antioxidant Activity of Polysaccharide from White Lilacs[J]. Science and Technology of Food Industry, 2024, 45(15): 233−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090036.
Citation: WANG Tianyi, ZHANG Qingfen, HUANG Leilei, et al. Extraction, Purification and Antioxidant Activity of Polysaccharide from White Lilacs[J]. Science and Technology of Food Industry, 2024, 45(15): 233−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090036.

Extraction, Purification and Antioxidant Activity of Polysaccharide from White Lilacs

More Information
  • Received Date: September 05, 2023
  • Available Online: June 04, 2024
  • Enzyme-assisted ultrasonic extraction was employed to extract polysaccharides from white lilacs. The effects of various experimental conditions on the yield of polysaccharides from white lilacs were systematically analyzed using the response surface methodology (RSM). The crude extract was purified through DEAE-52 cellulose column and Sephadex G-100 gel column chromatography. High-performance gel permeation chromatography (HPGPC), ion chromatography (IC), ultraviolet spectrum analysis, Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were utilized for characterization of the polysaccharide structure and its antioxidant activity in vitro was investigated. The results demonstrated that the optimal extraction process for polysaccharides from white lilacs involved ultrasonic power 150 W, ultrasonic time 40 min, ultrasonic temperature 40 ℃, enzyme dosage 2.2%, solid-liquid ratio 1:40 g/mL. Under these conditions, the yield of polysaccharides was 3.03%±0.09%. The polysaccharides were purified using a DEAE-52 cellulose column, and the main component SP-c was collected. Subsequently, SP-c-1 was obtained through a Sephadex G-100 gel column. The monosaccharide composition and molar ratio of SP-c-1 were galacturonic acid, arabinose, galactose, rhamnose, glucose, glucuronic acid, xylose=18.39:11.13:8.96:2.61:1:0.83:0.57, respectively. The weight-average molecular weight (Mw) of SP-c-1 was 14069 Da, and the numerical mean molecular weight (Mn) was 13637 Da. SP-c-1 had the characteristic absorption peak of polysaccharide and contained D-grape pyranose configuration. The half-inhibitory concentration (IC50) of SP-c-1 on DPPH and ABTS+ free radicals was 0.87 and 1.355 mg/mL, respectively. Overall results indicate that SP-c-1 exhibits significant antioxidant activity.
  • [1]
    尹承增. 紫丁香花挥发性物质定性分析[J]. 东北林业大学学报,2005(2):112−113. [YIN C Z. Analysis and appraisement of volatilisable substance in flowers of lilac[J]. Journal of Northeast Forestry University,2005(2):112−113.] doi: 10.3969/j.issn.1000-5382.2005.02.047

    YIN C Z. Analysis and appraisement of volatilisable substance in flowers of lilac[J]. Journal of Northeast Forestry University, 2005(2): 112−113. doi: 10.3969/j.issn.1000-5382.2005.02.047
    [2]
    PILONG P, CHUESIANG P, MISHRA D K, et al. Characteristics and antimicrobial activity of microfluidized clove essential oil nanoemulsion optimized using response surface methodology[J]. Journal of Food Processing and Preservation,2022,46(12):12.
    [3]
    EL-MAATI M F A, MAHGOUB S A, LABIB S M, et al. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities[J]. European Journal of Integrative Medicine,2016,8(4):494−504. doi: 10.1016/j.eujim.2016.02.006
    [4]
    王化, 周丽萍, 李梦莎, 等. 微波辅助提取暴马丁香中紫丁香苷和橄榄苦苷的工艺研究[J]. 植物研究,2016,36(1):141−145. [WANG H, ZHOU L P, LI M S, et al. Optimzation of microwave-assisted extraction of syringin and oleuroprin from Syringa reticulata[J]. Bulletin of Botanical Research,2016,36(1):141−145.] doi: 10.7525/j.issn.1673-5102.2016.01.020

    WANG H, ZHOU L P, LI M S, et al. Optimzation of microwave-assisted extraction of syringin and oleuroprin from Syringa reticulata[J]. Bulletin of Botanical Research, 2016, 36(1): 141−145. doi: 10.7525/j.issn.1673-5102.2016.01.020
    [5]
    周伟, 于笛, 迟治平, 等. 超声微波协同萃取紫丁香叶总黄酮工艺及其稳定性研究[J]. 中国食品添加剂,2018(8):111−119. [ZHOU W, YU D, CHI Z P, et al. Study on ultrasonic-microwave synergistic extraction process and stability of total flavonoids from Syringa oblata leaves[J]. China Food Additives,2018(8):111−119.] doi: 10.3969/j.issn.1006-2513.2018.08.011

    ZHOU W, YU D, CHI Z P, et al. Study on ultrasonic-microwave synergistic extraction process and stability of total flavonoids from Syringa oblata leaves[J]. China Food Additives, 2018(8): 111−119. doi: 10.3969/j.issn.1006-2513.2018.08.011
    [6]
    HUI Y, HUA J L, WANG C. Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine[J]. International Journal of Biological Macromolecules,2019, 121:1203−1212.
    [7]
    YIN Z H, LIANG Z H, LI C Q, et al. Immunomodulatory effects of polysaccharides from edible fungus: A review[J]. Food Science and Human Wellness,2021,10(4):393−400. doi: 10.1016/j.fshw.2021.04.001
    [8]
    LI T T, HUANG S M, WANG J, et al. Alginate oligosaccharides protect against fumonisin B1-induced intestinal damage via promoting gut microbiota homeostasis[J]. Food Research International,2022,152:12.
    [9]
    YU M L, YUE J, HUI N, et al. Anti-hyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model[J]. Foods,2021,10(10):19.
    [10]
    WU D T, HE Y, FU M X, et al. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction[J]. Food Hydrocolloids,2022,122:12.
    [11]
    CUI R B, ZHU F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications[J]. Trends in Food Science & Technology,2021,107:491−508.
    [12]
    景年华, 史俊友, 刘慧, 等. 枇杷叶多糖超声波辅助提取工艺优化[J]. 山东化工,2022,51(14):34−36, 39. [JING N H, SHI J Y, LIU H, et al. Optimization of ultrasonic assisted extraction process of polysaccharides from Eriobotrya japonica leaves[J]. Shandong Chemical Industry,2022,51(14):34−36, 39]

    JING N H, SHI J Y, LIU H, et al. Optimization of ultrasonic assisted extraction process of polysaccharides from Eriobotrya japonica leaves[J]. Shandong Chemical Industry, 2022, 51(14): 34−36, 39
    [13]
    江蔚新, 朱广伟, 李睿. 丁香叶与丁香花中多糖含量比较[J]. 中成药,2007(8):1251−1252. [JIANG W X, ZHU G W, LI R. Comparison of polysaccharide contents in lilac leaves and Lilac flowers[J]. Chinese Traditional Patent Medicine,2007(8):1251−1252.]

    JIANG W X, ZHU G W, LI R. Comparison of polysaccharide contents in lilac leaves and Lilac flowers[J]. Chinese Traditional Patent Medicine, 2007(8): 1251−1252.
    [14]
    徐蕊, 郑友兰, 韩佳宏, 等. 不同采收期小叶丁香皮中黄酮和多糖含量的比较研究[J]. 人参研究,2011,23(3):19−23. [XU R, ZHENG Y L, HAN J H, et al. Comparative studies on the flavonoids and polysaccharides from skin of Syringa pubescens Turcz.in different harvest[J]. Ginseng Research,2011,23(3):19−23.]

    XU R, ZHENG Y L, HAN J H, et al. Comparative studies on the flavonoids and polysaccharides from skin of Syringa pubescens Turcz.in different harvest[J]. Ginseng Research, 2011, 23(3): 19−23.
    [15]
    AHMAD A, ALKHARFY K M, WANI T A, et al. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi[J]. International Journal of Biological Macromolecules,2015,72:990−997. doi: 10.1016/j.ijbiomac.2014.10.011
    [16]
    王靓怡, 胡海燕, 李雪, 等. 植物多糖提取方法和提取动力学研究进展[J]. 化工科技,2022,30(3):65−68. [WANG L Y, HU H Y, LI X, et al. Research on plant polysaccharide extraction methods and extraction kinetics[J]. Science & Technology in Chemical Industry,2022,30(3):65−68.] doi: 10.3969/j.issn.1008-0511.2022.03.014

    WANG L Y, HU H Y, LI X, et al. Research on plant polysaccharide extraction methods and extraction kinetics[J]. Science & Technology in Chemical Industry, 2022, 30(3): 65−68. doi: 10.3969/j.issn.1008-0511.2022.03.014
    [17]
    游越, 杨菁菁, 姜壮壮, 等. 非热技术用于中药热不稳定成分提取研究进展[J]. 中医药学报,2021,49(12):117−121. [YOU Y, YANG J J, JIANG Z Z, et al. Research progress in non-thermal technologies for extraction of thermolabile components from Chinese medicinal[J]. Acta Chinese Medicine and Pharmacology,2021,49(12):117−121.]

    YOU Y, YANG J J, JIANG Z Z, et al. Research progress in non-thermal technologies for extraction of thermolabile components from Chinese medicinal[J]. Acta Chinese Medicine and Pharmacology, 2021, 49(12): 117−121.
    [18]
    申红林, 王凤玲. 灰树花多糖复合酶协同微波辅助提取工艺及抗氧化性研究[J]. 食品研究与开发,2020,41(22):124−131. [SHEN H L, WANG F L. Studies on compound enzymes synergistic microwave-assisted extraction process and antioxidant activity of Frifola frondosa polysaccharide[J]. Food Research and Development,2020,41(22):124−131.] doi: 10.12161/j.issn.1005-6521.2020.22.021

    SHEN H L, WANG F L. Studies on compound enzymes synergistic microwave-assisted extraction process and antioxidant activity of Frifola frondosa polysaccharide[J]. Food Research and Development, 2020, 41(22): 124−131. doi: 10.12161/j.issn.1005-6521.2020.22.021
    [19]
    ZHAO Z Y, ZHANG Q, LI Y F, et al. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2015,119:101−109. doi: 10.1016/j.carbpol.2014.11.052
    [20]
    孙燕丽, 吴晓青, 胡巧云. 超声波-复合酶法协同提取马齿苋多糖工艺的优化研究[J]. 饲料研究,2022,45(19):74−77. [SUN Y L, WU X Q, HU Q Y. Optimization of ultrasonic-complex enzymatic synergistic extraction of polysaccharides from Portulaca oleraces[J]. Feed Research,2022,45(19):74−77.]

    SUN Y L, WU X Q, HU Q Y. Optimization of ultrasonic-complex enzymatic synergistic extraction of polysaccharides from Portulaca oleraces[J]. Feed Research, 2022, 45(19): 74−77.
    [21]
    HAMMI K M, HAMMAMI M, RIHOUEY C, et al. GC-EI-MS identification data of neutral sugars of polysaccharides extracted from Zizyphus lotus fruit[J]. Data in Brief,2018,18:680−683. doi: 10.1016/j.dib.2018.01.085
    [22]
    纪鹏, 张蔓, 孙红国, 等. 响应面分析法优化当归粗多糖提取工艺[J]. 天然产物研究与开发,2013,25(7):976−981,888. [JI P, ZHANG M, SUN H G, et al. Optimization of extraction process of Angelica sinensis polysaccharide using response sueface methodology[J]. Natural Product Research and Development,2013,25(7):976−981,888.] doi: 10.3969/j.issn.1001-6880.2013.07.024

    JI P, ZHANG M, SUN H G, et al. Optimization of extraction process of Angelica sinensis polysaccharide using response sueface methodology[J]. Natural Product Research and Development, 2013, 25(7): 976−981,888. doi: 10.3969/j.issn.1001-6880.2013.07.024
    [23]
    薛燕, 敢小双, 黄开丽, 等. 铁皮石斛多糖复合酶法提取工艺及其抗氧化性[J]. 食品工业科技,2018,39(3):215−219,225. [XUE Y, GAN X S, HUANG K L, er al. Extraction process of polysaccharide by compound enzymatic method of Dendrobium officnale and its antioxidant activity[J]. Science and Technology of Food Industry,2018,39(3):215−219,225.]

    XUE Y, GAN X S, HUANG K L, er al. Extraction process of polysaccharide by compound enzymatic method of Dendrobium officnale and its antioxidant activity[J]. Science and Technology of Food Industry, 2018, 39(3): 215−219,225.
    [24]
    王迎香, 唐子惟, 彭腾, 等. 苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化[J]. 食品工业科技,2021,42(18):308−316. [WANG Y X, TANG Z W, PENG T, et al. Optimization of phenol sulfuric acid method for the polysaccharide content of wine-steamed Polygonatum cyrtonema Hua[J]. Science and Technology of Food Industry,2021,42(18):308−316.]

    WANG Y X, TANG Z W, PENG T, et al. Optimization of phenol sulfuric acid method for the polysaccharide content of wine-steamed Polygonatum cyrtonema Hua[J]. Science and Technology of Food Industry, 2021, 42(18): 308−316.
    [25]
    JI X L, PENG B X, DING H H, et al. Purification, structure and biological activity of pumpkin polysaccharides:A Review[J]. Food Reviews International,2023,39(1):307−319. doi: 10.1080/87559129.2021.1904973
    [26]
    QIAN S Q, FANG X H, DAN D M, et al. Ultrasonic-assisted enzymatic extraction of a water soluble polysaccharide from dragon fruit peel and its antioxidant activity[J]. Rsc Advances,2018,8(73):42145−42152. doi: 10.1039/C8RA06449K
    [27]
    WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249:127−135. doi: 10.1016/j.foodchem.2018.01.011
    [28]
    MOHSEN S M, AMMAR A S M. Total phenolic contents and antioxidant activity of corn tassel extracts[J]. Food Chemistry,2009,112(3):595−598. doi: 10.1016/j.foodchem.2008.06.014
    [29]
    SUN X Y, HAO L, MA H, et al. Extraction and in vitro antioxidant activity of exopolysaccharide by Pleurotus eryngii SI-02[J]. Brazilian Journal of Microbiology,2013,44(4):1081−1088. doi: 10.1590/S1517-83822013000400009
    [30]
    陈红惠, 牛念拉姆. 底圩茶多糖的超声波辅助提取及其抗氧化活性[J]. 食品工业科技,2020,41(21):179−184. [CHEN H H, NIUNIAN L M. Ultrasonic extraction and antioxidant activity of polysaccharide from Dixu tea[J]. Science and Technology of Food Industry,2020,41(21):179−184.]

    CHEN H H, NIUNIAN L M. Ultrasonic extraction and antioxidant activity of polysaccharide from Dixu tea[J]. Science and Technology of Food Industry, 2020, 41(21): 179−184.
    [31]
    DESEO M A, ELKINS A, ROCHFORT S, et al. Antioxidant activity and polyphenol composition of sugarcane molasses extract[J]. Food Chemistry,2020,314:10.
    [32]
    XU Y Q, ZHANG L, YANG Y, et al. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant[J]. Carbohydrate Polymers,2015,117:895−902. doi: 10.1016/j.carbpol.2014.10.032
    [33]
    WANG J, SUN B G, LIU Y L, et al. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran[J]. Food Chemistry,2014,150:482−488. doi: 10.1016/j.foodchem.2013.10.121
    [34]
    王艳, 聂志勇, 贺瑛, 等. 超声波协同复合酶法提取姬松茸多糖[J]. 天然产物研究与开发,2009,21(5):866−870. [WANG Y, NIE Z Y, HE Y, et al. Study on the extraction of Agaricus blazei Murill polysaccharide with compound enzymes under ultraonic wave[J]. Natural Product Research and Development,2009,21(5):866−870.] doi: 10.3969/j.issn.1001-6880.2009.05.034

    WANG Y, NIE Z Y, HE Y, et al. Study on the extraction of Agaricus blazei Murill polysaccharide with compound enzymes under ultraonic wave[J]. Natural Product Research and Development, 2009, 21(5): 866−870. doi: 10.3969/j.issn.1001-6880.2009.05.034
    [35]
    CHO Y J, GETACHEW A T, SARAVANA P S, et al. Optimization and characterization of polysaccharides extraction from Giant African snail (Achatina fulica) using pressurized hot water extraction (PHWE)[J]. Bioactive Carbohydrates and Dietary Fibre,2019,18:100179. doi: 10.1016/j.bcdf.2019.100179
    [36]
    千春录, 侯顺超, 殷健东, 等. 响应面试验优化水芹黄酮超声波辅助提取工艺及其抗氧化性[J]. 食品科学,2016,37(10):76−81. [QIAN C L, HOU S C, YIN J D, et al. Optimization of ultrasonic-assisted extraction of flavonoids from Oenanthe javanica and their antioxidant activity[J]. Food Science,2016,37(10):76−81.] doi: 10.7506/spkx1002-6630-201610013

    QIAN C L, HOU S C, YIN J D, et al. Optimization of ultrasonic-assisted extraction of flavonoids from Oenanthe javanica and their antioxidant activity[J]. Food Science, 2016, 37(10): 76−81. doi: 10.7506/spkx1002-6630-201610013
    [37]
    董红敏, 李素清, 牛小勇, 等. 正交实验优化川明参多糖超声提取工艺[J]. 食品工业科技,2014,35(8):306−309,322. [DONG H M, LI S Q, NIU X Y, et al. Optimization ultrasonic extraction of polysaccharides from Chuanminshen violaceum based on orthogonal experiments design[J]. Science and Technology of Food Industry,2014,35(8):306−309,322.]

    DONG H M, LI S Q, NIU X Y, et al. Optimization ultrasonic extraction of polysaccharides from Chuanminshen violaceum based on orthogonal experiments design[J]. Science and Technology of Food Industry, 2014, 35(8): 306−309,322.
    [38]
    YUAN S, XU C Y, XIA J, et al. Extraction of polysaccharides from Codonopsis pilosula by fermentation with response surface methodology[J]. Food Science & Nutrition,2020,8(12):6660−6669.
    [39]
    HAN L, SONG H, FU L C, et al. Effect of extraction method on the chemical profiles and bioactivities of soybean hull polysaccharides[J]. Food Science & Nutrition,2021,9(11):5928−5938.
    [40]
    LI Q, YU N W, WANG Y P, et al. Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities[J]. Carbohydrate Polymers,2013,96(1):148−155. doi: 10.1016/j.carbpol.2013.03.054
    [41]
    CHENG H, HUANG G L. The antioxidant activities of carboxymethylated garlic polysaccharide and its derivatives[J]. International Journal of Biological Macromolecules,2019,140:1054−1063. doi: 10.1016/j.ijbiomac.2019.08.204
    [42]
    阮征, 胡筱波, 陈浩, 等. 香菇多糖L-2A的结构表征[J]. 光谱实验室,2007(3):496−500. [RUAN Z, HU X B, CHEN H, et al. Characterization of polysaccharide L-2A isolated from Lentinus edodes[J]. Chinese Journal of Spectroscopy Laboratory,2007(3):496−500.] doi: 10.3969/j.issn.1004-8138.2007.03.057

    RUAN Z, HU X B, CHEN H, et al. Characterization of polysaccharide L-2A isolated from Lentinus edodes[J]. Chinese Journal of Spectroscopy Laboratory, 2007(3): 496−500. doi: 10.3969/j.issn.1004-8138.2007.03.057
    [43]
    JI X L, HOU C Y, YAN Y Z, et al. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit[J]. International Journal of Biological Macromolecules,2020,149:1008−1018. doi: 10.1016/j.ijbiomac.2020.02.018
    [44]
    韦志, 阮心眉, 戴涛涛, 等. 碱提砂仁多糖的结构表征及其抗氧化活性研究[J]. 食品工业科技,2021,42(24):87−93. [[WEI Z, RUAN X M, DAI T T, et al. Structure characterization and antioxidant activity of polysaccharides from Amomum villosum extracted with alkaline solution[J]. Science and Technology of Food Industry,2021,42(24):87−93.]

    [WEI Z, RUAN X M, DAI T T, et al. Structure characterization and antioxidant activity of polysaccharides from Amomum villosum extracted with alkaline solution[J]. Science and Technology of Food Industry, 2021, 42(24): 87−93.
    [45]
    储启明, 魏洪玲, 田叙晨, 等. 金花葵多糖提取工艺优化及结构表征和抗氧化性研究[J]. 食品工业科技,2023,44(8):236−243. [CHU Q M, WEI H L, TIAN X C, et al. Optimization of extraction technology, structure characterization and antioxidant activity of polysaccharide from Hibiseus manihot L

    J]. Science and Technology of Food Industry,2023,44(8):236−243.
    [46]
    AMAMOU S, LAZREG H, HAFSA J, et al. Effect of extraction condition on the antioxidant, antiglycation and α-amylase inhibitory activities of Opuntia macrorhiza fruit peels polysaccharides[J]. LWT-Food Science and Technology,2020,127:109411. doi: 10.1016/j.lwt.2020.109411
  • Related Articles

    [1]GU Dandan, DONG Xue, ZHANG Jinxiu, WANG Xiaoru, ZHAO Zongshuo, WANG Li'an. Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 237-245. DOI: 10.13386/j.issn1002-0306.2024090266
    [2]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [3]LI Yajun, YI Que, YANG Junheng, DENG Xiaomei, LIANG Zhonghou. Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(13): 179-183. DOI: 10.13386/j.issn1002-0306.2020090267
    [4]SHIAU Syyu, LI Ying, PAN Weicheng. Physico-chemical and Antioxidant Properties of Noodle Enriched with Beetroot Puree[J]. Science and Technology of Food Industry, 2021, 42(13): 33-38. DOI: 10.13386/j.issn1002-0306.2020070353
    [5]Yuedong SONG, Xiaoqing CHEN, Yumin ZHANG, Yanfang ZHANG, Zhiyi WANG, Fei WANG. Optimization of Extraction Process of Flavonoids from Fagopyrum esculentum Moench Leaves and Its Antioxidant Properties[J]. Science and Technology of Food Industry, 2021, 42(7): 180-187. DOI: 10.13386/j.issn1002-0306.2020060122
    [6]YAO Hong-ling, LU Qu, HAN Ran, NAI Yi-fan, JIA Tian-hui. The preparation process optimization and antioxidant properties in vitro of hydrolysates from pigeon meat[J]. Science and Technology of Food Industry, 2018, 39(4): 64-67,87.
    [7]LI Bo-hang, SHEN He-ding, ZHU Min, ZHAO Yong-can. Study on process optimization and antioxidant activity of bioactive peptides from Onchidium struma[J]. Science and Technology of Food Industry, 2017, (17): 168-173. DOI: 10.13386/j.issn1002-0306.2017.17.032
    [8]Study on antioxidation properties of hydrolysates from the scallop skirt in vivo and in vitro[J]. Science and Technology of Food Industry, 2013, (08): 290-294. DOI: 10.13386/j.issn1002-0306.2013.08.009
    [9]茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 张敏杰,杨武德,代叶,李玮,魏晴,梁珊珊. 黔产不同商品规格金钗石斛质量评价研究. 亚太传统医药. 2024(04): 39-43 .
    2. 林鑫静,张明,李鑫,周春阳,蒲跃,袁斌,范艺缤,范润勇,夏天琴,尤俊,杨晓曦,胥正敏. 调脏舒秘合剂小鼠急性毒性实验研究. 现代中医药. 2023(02): 91-95 .
    3. 杨吉容,石京山. 金钗石斛破壁粉对自发性高血压大鼠血压及心功能的影响. 遵义医科大学学报. 2022(06): 699-705 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return