GU Dandan, DONG Xue, ZHANG Jinxiu, et al. Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 237−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024090266.
Citation: GU Dandan, DONG Xue, ZHANG Jinxiu, et al. Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 237−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024090266.

Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity

More Information
  • Received Date: September 19, 2024
  • Available Online: December 07, 2024
  • Using wheat grains as the raw material and Morchella esculenta as the fermentation strain, fungus fermented wheat (FFW) was prepared through a solid-state fermentation process. Crude fiber content and non-starch polysaccharide (NSP) content were used as evaluation indicators, while factors such as the material to liquid ratio, initial pH of the substrate, inoculum amount, and fermentation duration were investigated. An orthogonal experimental design was utilized to optimize the preparation process of FFW, and the nutritional composition, physicochemical properties and antioxidant activity were analyzed. The results showed that the optimal fermentation conditions were a material to liquid ratio of 1:0.9 (g:mL), an initial substrate pH of 7.0, an inoculum amount of 5 inoculum blocks (each with a diameter of 0.8 cm), and a fermentation duration of 10 days. Under these conditions, the crude fiber content of FFW was 4.09%, and the NSP content was 9.31%. Compared to unfermented wheat, the surface of FFW developed holes, increased grooves, and deepened wrinkles. The protein content of FFW increased by 78.79%, while the carbohydrate content decreased by 17.79%. The soluble dietary fiber (SDF) increased by 43.70%, whereas the insoluble dietary fiber (IDF) decreased by 19.24%, with no significant change in the total dietary fiber (TDF). Additionally, the water-holding capacity, unsaturated fatty acid adsorption capacity, saturated fatty acid adsorption capacity, and swelling capacity of FFW increased by 77.84%, 11.49%, 25.00%, and 26.00%, respectively. Under simulated conditions of the human stomach and intestine, the cholesterol adsorption rate increased by 86.29% and 290.14%, respectively. The total antioxidant activity, DPPH radical scavenging rate, superoxide anion radical scavenging rate, and hydroxyl radical scavenging rate of FFW increased by 41.29%, 14.54%, 490.68%, and 10.80%, respectively. In summary, FFW prepared by this process significantly enhances the nutritional value, physicochemical properties, and antioxidant activity of wheat, providing a theoretical basis for the development of new products based on FFW.
  • [1]
    中华人民共和国国家统计局. 国民经济和社会发展统计公报[R]. 北京:中国统计出版社, 2024. [National Bureau of Statistics of China. Statistical Bulletin on National Economic and Social Development[R]. Bejing:China Statistics Press, 2024.]

    National Bureau of Statistics of China. Statistical Bulletin on National Economic and Social Development[R]. Bejing: China Statistics Press, 2024.
    [2]
    郑静洁, 孙月, 侯汉学. 全麦粉和全麦食品研究进展[J]. 食品研究与开发,2024,45(3):219−224. [ZHENG J J, SUN Y, HOU H X. Research progress in whole wheat flour and whole wheat food[J]. Food Research and Development,2024,45(3):219−224.]

    ZHENG J J, SUN Y, HOU H X. Research progress in whole wheat flour and whole wheat food[J]. Food Research and Development, 2024, 45(3): 219−224.
    [3]
    GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017:A systematic analysis for the global burden of disease study 2017[J]. Lancet,2019,393(10184):1958−1972. doi: 10.1016/S0140-6736(19)30041-8
    [4]
    LIU J E, YU L L, WU Y B. Bioactive components and health beneficial properties of whole wheat foods[J]. Journal of Agricultural and Food Chemistry,2020,68(46):12904−12915. doi: 10.1021/acs.jafc.0c00705
    [5]
    KISSOCK K R, NEALE E P, BECK E J. Whole grain food definition effects on determining associations of whole grain intake and body weight changes:A systematic review[J]. Advances in Nutrition,2021,12(3):693−707. doi: 10.1093/advances/nmaa122
    [6]
    AUNE D, KEUM N, GIOVANNUCCI E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality:Systematic review and dose-response meta-analysis of prospective studies[J]. The British Medical Journal,2016,353:i2716.
    [7]
    WU W J, QIU J, WANG A L, et al. Impact of whole cereals and processing on type 2 diabetes mellitus:A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(9):1447−1474. doi: 10.1080/10408398.2019.1574708
    [8]
    KHAN J, GUL P, LIU K L. Grains in a modern time:A comprehensive review of compositions and understanding their role in type 2 diabetes and cancer[J]. Foods,2024,13(13):2112. doi: 10.3390/foods13132112
    [9]
    DE PUNDER K, PRUIMBOOM L. The dietary intake of wheat and other cereal grains and their role in inflammation[J]. Nutrients,2013,5(3):771−787. doi: 10.3390/nu5030771
    [10]
    刘颖, 张云亮, 窦博鑫, 等. 全谷物在疾病调控中的作用和分子机制研究进展[J]. 食品科学,2022,43(9):317−325. [LIU Y, ZHANG Y L, DOU B X, et al. Recent progress in understanding the role and molecular mechanism of whole grains in disease regulation[J]. Food Science,2022,43(9):317−325.]

    LIU Y, ZHANG Y L, DOU B X, et al. Recent progress in understanding the role and molecular mechanism of whole grains in disease regulation[J]. Food Science, 2022, 43(9): 317−325.
    [11]
    沈汪洋. 全麦粉加工及其应用研究进展[J]. 粮食与油脂,2024,37(7):1−4,16. [SHEN W Y. Research progress on processing of whole wheat flour and its application[J]. Cereals & Oils,2024,37(7):1−4,16.] doi: 10.3969/j.issn.1008-9578.2024.07.001

    SHEN W Y. Research progress on processing of whole wheat flour and its application[J]. Cereals & Oils, 2024, 37(7): 1−4,16. doi: 10.3969/j.issn.1008-9578.2024.07.001
    [12]
    马茹男, 翟飞红, 刘红艳, 等. 姬松茸固态发酵对小麦多酚的影响[J]. 食品工业科技,2017,38(3):156−158,165. [MA R N, ZHAI F H, LIU H Y, et al. Effect of solid-state fermentation with Agaricus blazei on polyphenols of wheat[J]. Science and Technology of Food Industry,2017,38(3):156−158,165.]

    MA R N, ZHAI F H, LIU H Y, et al. Effect of solid-state fermentation with Agaricus blazei on polyphenols of wheat[J]. Science and Technology of Food Industry, 2017, 38(3): 156−158,165.
    [13]
    张娅妮, 解修超, 王昌钊, 等. 大球盖菇固态发酵对小麦营养成分影响的研究[J]. 食品科技,2023,48(8):121−126. [ZHANG Y N, XIE X C, WANG C Z, et al. Nutrient composition of wheat by solid fermentation of Strophaia rugoso-annulata[J]. Food Science and Technology,2023,48(8):121−126.]

    ZHANG Y N, XIE X C, WANG C Z, et al. Nutrient composition of wheat by solid fermentation of Strophaia rugoso-annulata[J]. Food Science and Technology, 2023, 48(8): 121−126.
    [14]
    徐莉娜, 郭尚, 李艳婷, 等. 不同真菌固态发酵对谷物多酚含量和抗氧化性的影响[J]. 山西农业科学,2023,51(12):1395−1403. [XU L N, GUO S, LI Y T, et al. Effect of solid-state fermentation with different fungi on phenol contents and antioxidant properties of cereal grains[J]. Journal of Shanxi Agricultural Sciences,2023,51(12):1395−1403.]

    XU L N, GUO S, LI Y T, et al. Effect of solid-state fermentation with different fungi on phenol contents and antioxidant properties of cereal grains[J]. Journal of Shanxi Agricultural Sciences, 2023, 51(12): 1395−1403.
    [15]
    田金凤, 尚远宏, 肖宗妮. 羊肚菌的营养成分、功能和加工的研究进展[J]. 食品工业科技,2024,45(9):419−428. [TIAN J F, SHANG Y H, XIAO Z N. Research progress on nutrient composition, function and processing of Morels[J]. Science and Technology of Food Industry,2024,45(9):419−428.]

    TIAN J F, SHANG Y H, XIAO Z N. Research progress on nutrient composition, function and processing of Morels[J]. Science and Technology of Food Industry, 2024, 45(9): 419−428.
    [16]
    李娅, 刘京晶, 张新凤, 等. 铁皮石斛非淀粉多糖含量测定方法的研究[J]. 中国中药杂志,2019,44(15):3221−3225. [LI Y, LIU J J, ZHANG X F, et al. Study on quantification method of non-starch polysaccharides in Dendrobium catenatum[J]. China Journal of Chinese Materia Medica,2019,44(15):3221−3225.]

    LI Y, LIU J J, ZHANG X F, et al. Study on quantification method of non-starch polysaccharides in Dendrobium catenatum[J]. China Journal of Chinese Materia Medica, 2019, 44(15): 3221−3225.
    [17]
    SANGNARK A, NOOMHORM A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse[J]. Food Chemistry,2003,80(2):221−229. doi: 10.1016/S0308-8146(02)00257-1
    [18]
    宋丽丽, 霍姗浩, 胡冉冉, 等. 复合乳酸菌固态发酵对脱脂米糠理化性质、生物活性和功能特性的影响[J]. 轻工学报,2024,39(3):21−28. [SONG L L, HUO S H, HU R R, et al. Effect of solid-state fermentation with compound lactic acid bacteria on the physicochemical properties, biological activities and functional characteristics of defatted rice bran[J]. Journal of Light Industry,2024,39(3):21−28.]

    SONG L L, HUO S H, HU R R, et al. Effect of solid-state fermentation with compound lactic acid bacteria on the physicochemical properties, biological activities and functional characteristics of defatted rice bran[J]. Journal of Light Industry, 2024, 39(3): 21−28.
    [19]
    肖愈. 蛹虫草SN-18固态发酵鹰嘴豆对其理化特性和功能活性的影响[D]. 南京:南京农业大学, 2018. [XIAO Y. Effects of solid state fermentation with cordyceps militaris SN-18 on physicochemical characteristics and functional properties of chickpea[D]. Nanjing:Nanjing Agricultural University, 2018.]

    XIAO Y. Effects of solid state fermentation with cordyceps militaris SN-18 on physicochemical characteristics and functional properties of chickpea[D]. Nanjing: Nanjing Agricultural University, 2018.
    [20]
    顾丹丹, 侯静宇, 张金秀, 等. 两种方法制备的蛹虫草多糖特性及体外生物活性对比分析[J]. 食品工业科技,2023,44(18):76−83. [GU D D, HOU J Y, ZHANG J X, et al. Comparative analysis of characteristics and in vitro biological activities of Cordyceps militaris polysaccharide prepared by two methods[J]. Science and Technology of Food Industry,2023,44(18):76−83.]

    GU D D, HOU J Y, ZHANG J X, et al. Comparative analysis of characteristics and in vitro biological activities of Cordyceps militaris polysaccharide prepared by two methods[J]. Science and Technology of Food Industry, 2023, 44(18): 76−83.
    [21]
    王浩东, 赵锐, 吴亮亮, 等. 羊肚菌生物学特性及栽培技术研究进展[J]. 中国野生植物资源,2024,43(2):91−95. [WANG H D, ZHAO R, WU L L, et al. Research progress on biological characteristics and cultivation techniques of Morchella[J]. Chinese Wild Plant Resources,2024,43(2):91−95.]

    WANG H D, ZHAO R, WU L L, et al. Research progress on biological characteristics and cultivation techniques of Morchella[J]. Chinese Wild Plant Resources, 2024, 43(2): 91−95.
    [22]
    王月, 任梓铭, 于延申. 羊肚菌菌种鉴定及生长条件优化[J]. 北方园艺,2022(6):114−121. [WANG Y, REN Z M, YU Y S. Identificaton of Morchella esculenta and growth conditions optimization[J]. Northern Horticulture,2022(6):114−121.]

    WANG Y, REN Z M, YU Y S. Identificaton of Morchella esculenta and growth conditions optimization[J]. Northern Horticulture, 2022(6): 114−121.
    [23]
    王夫杰, 赵金杨, 张金兰, 等. 响应面法优化食用菌农平1号固态发酵豆渣的条件[J]. 食品科学,2015,36(9):89−96. [WANG F J, ZHAO J Y, ZHANG J L, et al. Application of response surface methodology to optimize fermentation conditions of okara by Pleurotus ostreatus Nongping 1[J]. Food Science,2015,36(9):89−96.] doi: 10.7506/spkx1002-6630-201509017

    WANG F J, ZHAO J Y, ZHANG J L, et al. Application of response surface methodology to optimize fermentation conditions of okara by Pleurotus ostreatus Nongping 1[J]. Food Science, 2015, 36(9): 89−96. doi: 10.7506/spkx1002-6630-201509017
    [24]
    郑选东, 许姗姗, 刘江文, 等. 冠突散囊菌固态发酵夏秋茶工艺优化和理化特性分析[J]. 食品工业科技,2024,45(16):220−230. [ZHENG X D, XU S S, LIU J W, et al. Process optimization and physicochemical characterization of solid state fermentation of summer-autumn tea by Eurotium cristatum[J]. Science and Technology of Food Industry,2024,45(16):220−230.]

    ZHENG X D, XU S S, LIU J W, et al. Process optimization and physicochemical characterization of solid state fermentation of summer-autumn tea by Eurotium cristatum[J]. Science and Technology of Food Industry, 2024, 45(16): 220−230.
    [25]
    YUAN X Y, WANG T, SUN L P, et al. Recent advances of fermented fruits:A review on strains, fermentation strategies, and functional activities[J]. Food Chemistry X,2024,22:101482. doi: 10.1016/j.fochx.2024.101482
    [26]
    刘洋洋, 蒲晓庆, 李力, 等. 白腐菌发酵对麸皮性质的影响[J]. 粮食与油脂,2017,30(8):72−74. [LIU Y Y, PU X Q, LI L, et al. Effect of white-rot fungus fermentation on the property of wheat bran[J]. Cereals & Oils,2017,30(8):72−74.]

    LIU Y Y, PU X Q, LI L, et al. Effect of white-rot fungus fermentation on the property of wheat bran[J]. Cereals & Oils, 2017, 30(8): 72−74.
    [27]
    郭晓威. 木质素降解菌株的分离筛选及酶解转化玉米秸秆的研究[D]. 长春:吉林农业大学, 2017. [GUO X W. Isolation of lignin-degrading strain and enzymatic hydrolysis of corn stover[D]. Changchun:Jilin Agricultural University, 2017.]

    GUO X W. Isolation of lignin-degrading strain and enzymatic hydrolysis of corn stover[D]. Changchun: Jilin Agricultural University, 2017.
    [28]
    WANG W, YUAN T Q, CUI B K, et al. Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis[J]. Bioresource Technology,2013,134:381−385. doi: 10.1016/j.biortech.2013.02.042
    [29]
    覃宇悦, 余虹达, 陈柯君, 等. 紫米粉和羊肚菌粉添加对面团及面包品质的影响[J/OL]. 食品工业科技, 1−16[2024-12-03]. https://doi.org/10.13386/j.issn1002-0306.2024020188. [QIN Y Y, YU H D, CHEN K J, et al. The effect of purple rice and Morchella esculenta powder substitution on the quality of dough and bread[J/OL]. Science and Technology of Food Industry, 1−16[2024-12-03]. https://doi.org/10.13386/j.issn1002-0306.2024020188.]

    QIN Y Y, YU H D, CHEN K J, et al. The effect of purple rice and Morchella esculenta powder substitution on the quality of dough and bread[J/OL]. Science and Technology of Food Industry, 1−16[2024-12-03]. https://doi.org/10.13386/j.issn1002-0306.2024020188.
    [30]
    刘明明, 雷志华, 黄苏静, 等. 香菇与猴头菇菌种对2种小麦基质固体发酵菌质营养的影响[J]. 贵州农业科学,2019,47(1):74−78. [LIU M M, LEI Z H, HUANG S J, et al. Effects of Lentinula edodes and Hericium erinaceus on nutritional in fungal substance of substrate solid fermentation of two wheat varieties[J]. Guizhou Agricultural Sciences,2019,47(1):74−78.]

    LIU M M, LEI Z H, HUANG S J, et al. Effects of Lentinula edodes and Hericium erinaceus on nutritional in fungal substance of substrate solid fermentation of two wheat varieties[J]. Guizhou Agricultural Sciences, 2019, 47(1): 74−78.
    [31]
    刘红艳, 翟飞红, 韩建荣. 双孢蘑菇固态发酵对玉米营养成分的影响[J]. 山西农业科学,2017,45(6):918−922. [LIU H Y, ZHAI F H, HAN J R. Effect of solid-state fermentation with Agaricus bisporus on nutritional ingredient of corn[J]. Shangxi Agricultural Sciences,2017,45(6):918−922.]

    LIU H Y, ZHAI F H, HAN J R. Effect of solid-state fermentation with Agaricus bisporus on nutritional ingredient of corn[J]. Shangxi Agricultural Sciences, 2017, 45(6): 918−922.
    [32]
    XUE P Y, LIAO W, CHEN Y, et al. Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger[J]. LWT-Food Science and Technology,2022,161:113387. doi: 10.1016/j.lwt.2022.113387
    [33]
    LI N J, WANG S J, WANG T L, et al. Valorization of wheat bran by three fungi solid-state fermentation:Physicochemical properties, antioxidant activity and flavor characteristics[J]. Foods,2022,11(12):1722. doi: 10.3390/foods11121722
    [34]
    许锡凯. 好食脉孢菌固态发酵麦麸制备可溶性膳食纤维及其功能性质[D]. 哈尔滨:哈尔滨商业大学, 2021. [XU X K. The preparation and functional properties of soluble dietary fiber (SDF) from wheat bran fermented by Neurospora sitophila[D]. Harbin:Harbin University of Commerce, 2021.]

    XU X K. The preparation and functional properties of soluble dietary fiber (SDF) from wheat bran fermented by Neurospora sitophila[D]. Harbin: Harbin University of Commerce, 2021.
    [35]
    LIU Z G, LI L, MA S B, et al. High-Dietary fiber intake alleviates antenatal obesity-induced postpartum depression:Roles of gut microbiota and microbial metabolite short-chain fatty acid involved[J]. Journal of Agricultural and Food Chemistry,2020,68(47):13697−13710. doi: 10.1021/acs.jafc.0c04290
    [36]
    田瀚吉, 高晓杰, 余建平, 等. 栽培羊肚菌培养菌丝生长的形态特征[J]. 青海草业, 2024, 33(1):15−22. [TIAN H J, GAO X J, YU J P, et al. Morphological characteristic of the mycelial growth of cultivated morchella[J]. Qinghai Prataculture, 2024, 33(1):15−22.]

    TIAN H J, GAO X J, YU J P, et al. Morphological characteristic of the mycelial growth of cultivated morchella[J]. Qinghai Prataculture, 2024, 33(1): 15−22.
    [37]
    仲雪, 陈晓明, 王乃娟, 等. 食用菌固态发酵对玉米粉抗氧化活性的影响[J]. 食品研究与开发,2023,44(1):1−8. [ZHONG X, CHEN X M, WANG N J, et al. Effects of solid-state fermentation of edible fungi on antioxidant activities of corn flour[J]. Food Research and Development,2023,44(1):1−8.] doi: 10.12161/j.issn.1005-6521.2023.01.001

    ZHONG X, CHEN X M, WANG N J, et al. Effects of solid-state fermentation of edible fungi on antioxidant activities of corn flour[J]. Food Research and Development, 2023, 44(1): 1−8. doi: 10.12161/j.issn.1005-6521.2023.01.001
    [38]
    RIZZELLO C G, LORUSSO A, RUSSO V, et al. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria[J]. International Journal of Food Microbiology,2017,241:252−261. doi: 10.1016/j.ijfoodmicro.2016.10.035
    [39]
    ZHANG S, HUANG Z X, LI Q N, et al. Two-stage solid-state fermentation to increase the nutrient value of corn processing waste and explore its efficacy as a feed protein source[J]. Food Chemistry X,2024,23:101656. doi: 10.1016/j.fochx.2024.101656
    [40]
    谢丽源, 兰秀华, 唐杰, 等. 不同品种羊肚菌挥发性物质分析及综合评价[J]. 食品工业科技,2021,42(15):227−233. [XIE L Y, LAN X H, TANG J, et al. Analysis and comprehensive evaluation of volatile substances in different varieties of Morchella spp

    J]. Science and Technology of Food Industry,2021,42(15):227−233.
    [41]
    王同波, 闫潇, 兰孝征. 顶空吸附萃取-气相色谱法分析小麦中部分风味物质[J]. 色谱,2013,31(5):467−472. [WANG T B, YAN X, LAN X Z. Analysis of part of flavor compounds in wheat by headspace sorptive extraction-gas chromatography[J]. Chinese Journal of Chromatography,2013,31(5):467−472.] doi: 10.3724/SP.J.1123.2012.12041

    WANG T B, YAN X, LAN X Z. Analysis of part of flavor compounds in wheat by headspace sorptive extraction-gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(5): 467−472. doi: 10.3724/SP.J.1123.2012.12041
  • Related Articles

    [1]HUANG Leilei, LIU Jiayi, WANG Tianyi, ZHANG Qingfen, YANG Fengjian. Optimization of Cellulase-Assisted Ultrasound Extraction and Antioxidant Analysis of Flavonoids from Syringa oblata Leaves[J]. Science and Technology of Food Industry, 2024, 45(4): 161-170. DOI: 10.13386/j.issn1002-0306.2023040124
    [2]MA Jiajie, ZHAO Duanduan, QUAN Shihang, HUAN Qitong, HAO Shuai, LI Kun, PIAO Chunxiang, LI Guanhao, LI Hongmei, MU Baide. Optimization of Extraction Process of Flavonoids and Polyphenols from Perilla frutescens (L.) Britt Leaves and Comparison of Antioxidant Activities of Different Varieties[J]. Science and Technology of Food Industry, 2023, 44(12): 344-352. DOI: 10.13386/j.issn1002-0306.2022080165
    [3]HE Xuhua, SHI Zhijiao, WANG Anna, ZHAO Chunfang, LIU Yun, KAN Huan. Optimization of Extraction Process of Flavonoids from Aronia melanocarpas' Leaves and Analysis of Their Antioxidant and Bile Salt Binding Capacity[J]. Science and Technology of Food Industry, 2023, 44(2): 253-260. DOI: 10.13386/j.issn1002-0306.2022040316
    [4]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [5]TAN Chunyuan, YAN Jie, HUANG Huimin, ZHOU Zhijian, WU Zijun. Optimization of Ultrasonic-assisted Extraction Process of Flavonoids from Damiana by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(16): 191-198. DOI: 10.13386/j.issn1002-0306.2020120047
    [6]DUAN Zhou-wei, CHEN Ting, HE Ai, FANG Zong-zhuang, WANG Shi-ping, XIE Hui. Optimization of Purification of Flavonoids from Aloes Leaves with Macroporous Resin and Comparison of Antioxidant Capacity of Crude and Purified Flavonoids[J]. Science and Technology of Food Industry, 2020, 41(17): 161-166. DOI: 10.13386/j.issn1002-0306.2020.17.027
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SU Long, LV Feng-dan, WANG Xue-ru, FENG Lu, YAN Su-ping. Optimization of fermentation parameters by response surface methodology and the antioxidant capacity of Myrica rubra wine[J]. Science and Technology of Food Industry, 2017, (20): 146-151. DOI: 10.13386/j.issn1002-0306.2017.20.027
    [9]YANG Zhe, WAN Shan, ZHANG Qiao-hui, DONG Shi-bin, NING Ya-ping, WANG Jian-zhong. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (06): 279-284. DOI: 10.13386/j.issn1002-0306.2015.06.053
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 周春仲,郑伟清,袁晓怡,欧志坚,姜一平. 高良姜二苯庚烷化合物对3T3-L1前脂肪细胞分化的影响和机制研究. 系统医学. 2024(01): 6-9+13 .
    2. 陈少影,李晶晶,兰卫. 常用中药有效成分降脂作用研究进展. 中国实验方剂学杂志. 2023(13): 241-253 .
    3. 倪伟锋,赵大庆,倪以宇,白竹林,王思明. 人参-丁香醇提物抑制高山被孢霉脂质合成的活性评价. 食品工业科技. 2022(21): 388-395 . 本站查看
    4. 周心悦,周逸辰,陈晋,王文骏,刘东红. 胡柚及其苦味黄烷酮对糖脂代谢相关疾病的调节功能研究进展. 中国食品添加剂. 2022(12): 41-49 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (71) PDF downloads (17) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return