LI Yajun, YI Que, YANG Junheng, et al. Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity [J]. Science and Technology of Food Industry, 2021, 42(13): 179−183. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090267.
Citation: LI Yajun, YI Que, YANG Junheng, et al. Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity [J]. Science and Technology of Food Industry, 2021, 42(13): 179−183. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090267.

Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity

More Information
  • Received Date: September 26, 2020
  • Available Online: May 10, 2021
  • Objective: To optimize the extraction technology and study the antioxidant activity of total flavonoids from the Kadsura coccinea flowers. Methods: The optimum extraction process of total flavonoids from the Kadsura coccinea flowers was optimized by single factor test (ethanol concentration, ultrasonic time, solid-liquid ratio, ultrasonic temperature) and orthogonal experiment. The scavenging ability of total flavonoids on ABTS and DPPH free radicals was evaluated. Results: Full opening period(June), ultrasonic time 45 min, solid-liquid ratio 1:30 mg/mL, ultrasonic temperature 60 ℃, ethanol concentration 85% were the optimal extraction conditions, the extraction quantity of optimum extraction condition was 19.25 mg/g. When the concentration of total flavonoids was 0.8 mg/mL, the scavenging rate on DPPH free radical was 82.1%, it was 87.9% of that of vitamin C. When the concentration of total flavonoids was 0.4 m, the scavenging ability on ABTS free radical was similar to that of vitamin C. The IC50 of total flavonoids from the Kadsura coccinea flowers against DPPH free radical and ABTS radical were 0.13, 0.046 mg/mL, respectively.Conclusion: The extraction method is feasible and the extraction conditions are reliable, the total flavonoids of Kadsura coccinea flowers can be used as a source of natural antioxidants.
  • [1]
    李亚军, 黄国保, 全海燕, 等. 黑老虎叶总黄酮提取工艺及其抗氧化活性研究[J]. 广西植物,2020,40(9):1381−1388. doi: 10.11931/guihaia.gxzw201908022
    [2]
    陆俊, 刘如如, 赵雪萌, 等. 黑老虎活性成分及生理活性研究进展[J]. 食品研究与开发,2018,39(2):219−224. doi: 10.3969/j.issn.1005-6521.2018.02.040
    [3]
    郭耀杰, 高石曼, 张本刚, 等. 长梗南五味子藤茎的化学成分研究[J]. 中药材,2016,39(6):1287−1290.
    [4]
    Hu Z X, Li X N, Shi Y M, et al. Lanostane-type triterpenoids from Kadsura coccinea[J]. Tetrahedron,2017,73(20):2931−2937. doi: 10.1016/j.tet.2017.03.087
    [5]
    Yang Y P, Liu Y B, Muhammad D, et al. New lignans from roots of Kadsura coccinea[J]. Fitoterapia,2019:104368−104376.
    [6]
    李力, 汤立洁, 徐永莉, 等. 近十年黑老虎的化学成分及功能作用研究进展[J]. 中药材,2020,43 (1):236−242.
    [7]
    Woo M H, Nguyen D H, Jae Choi S, et al. Chemical constituents from the roots of Kadsura coccinea with their protein tyrosine phosphatase 1B and acetylcholinesterase inhibitory activities[J]. Arch Pharm Res,2020,235(43):204−213.
    [8]
    Varittha S, Piya T, Nattira O N, et al. Phenolic profiles, antioxidant, and inhibitory activities of Kadsura heteroclita (Roxb.) Craib andKadsura coccinea (Lem.) A. C. Sm.[J]. Arch Pharm Res,2020,9(9):1222−1230.
    [9]
    苏华, 何飞, 韦桂宁, 等. 大钻水提物对小鼠凝血时间以及血栓形成的影响[J]. 药学研究,2017,36(10):565−566, 582.
    [10]
    梁忠厚, 范适, 宋光桃, 等. 黑老虎的研究进展[J]. 湖南生态科学学报,2017,4(3):52−56. doi: 10.3969/j.issn.2095-7300.2017.03-052
    [11]
    金智玲, 李超杰, 张祥云, 等. 瑶药大钻的药理作用及临床应用研究进展[J]. 中国民族民间医药,2020,29(15):50−54.
    [12]
    李有清, 梁忠厚. 湖南濒危中药材黑老虎野生资源调查[J]. 湖南生态科学学报,2018,5(3):35−39. doi: 10.3969/j.issn.2095-7300.2018.03-035
    [13]
    Niquini F M, Tenorio J C, Silva M F G F. On the conformation, molecular interactions and electron density of a natural flavonoid derivative[J]. Journal of Molecular Structure,2020,1220(15):50−54.
    [14]
    Hwang E S, Thi N. Antioxidant and anti-inflammatory activities of Orostachys japonicus[J]. Asian Pacific Journal of Tropical Biomedicine,2020,1220:128632.
    [15]
    牟佳佳, 邱爽, 陈党辉. 天然黄酮类化合物抑制细胞周期蛋白依赖性激酶研究进展[J]. 沈阳医科大学学报,2020,37(9):852−864.
    [16]
    王伟, 何平, 江小明. 木犀草素及其黄酮苷的抗炎、抗氧化作用[J]. 食品科学,2020,41(17):208−215. doi: 10.7506/spkx1002-6630-20190908-103
    [17]
    李亚军, 易鹊, 邓小美, 等. 桂花籽总黄酮的提取工艺及抗氧化活性研究[J]. 粮食与油脂,2020,33(9):98−101. doi: 10.3969/j.issn.1008-9578.2020.09.023
    [18]
    李杰, 尚孟文, 李婼楠, 等. 黄芩中3种黄酮水热法提取工艺的优化[J]. 中成药,2020,42(9):52427−2430.
    [19]
    范艳丽, 张博, 李梓溢, 等. 红枣核总黄酮的提取工艺及抗氧化活性研究[J]. 食品研究与开发,2017,38(3):95−100. doi: 10.3969/j.issn.1005-6521.2017.03.021
    [20]
    刘小娟, 方月娟, 夏道宗, 等. 衢枳壳总黄酮提取工艺的优化及其抗氧化活性[J]. 中成药,2020,42(7):1687−1691.
    [21]
    Rahali F Z, Kefi S, Rebey I B, et al. Phytochemical composition and antioxidant activities of different aerial parts extracts of Ferula communis L.[J]. Plant Biosystems,2018,153(2):1−9.
    [22]
    李利华, 郭豫梅. 白豆蔻总黄酮的提取及抗氧化活性研究[J]. 中国调味品,2020,45(9):178−181.
    [23]
    刘淑琴. 牛油果黄酮提取工艺优化及其体外抗氧化活性分析[J]. 食品科技,2020,45(5):207−214.
    [24]
    Tian J Y, Muhammad S, Chen A, et al. An experimental study exploring the influencing factors for ultrasonic-assisted extraction of flavonoid compounds from leaves of Amorpha fruticosa L.[J]. Journal of Forestry Research. 2019, 30(5): 1735−1741.
    [25]
    邱程阳, 孔慧梅, 郑方正, 等. 不同干燥方法对铁皮石斛花黄酮含量和抗氧化活性的影响[J]. 时珍国医国药,2020,31(3):598−600.
    [26]
    Ouerghemmi L S, Sebei H, Siracusa L, et al. Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wildRosa species grown in different Tunisia regions[J]. Industrial Crops and Products,2016,94:167−177. doi: 10.1016/j.indcrop.2016.08.019
    [27]
    董梦依. 几种黄酮类化合物抗氧化、抗肿瘤活性研究及构效关系初探[D]. 南昌: 南昌大学, 2019.
  • Related Articles

    [1]HUANG Leilei, LIU Jiayi, WANG Tianyi, ZHANG Qingfen, YANG Fengjian. Optimization of Cellulase-Assisted Ultrasound Extraction and Antioxidant Analysis of Flavonoids from Syringa oblata Leaves[J]. Science and Technology of Food Industry, 2024, 45(4): 161-170. DOI: 10.13386/j.issn1002-0306.2023040124
    [2]MA Jiajie, ZHAO Duanduan, QUAN Shihang, HUAN Qitong, HAO Shuai, LI Kun, PIAO Chunxiang, LI Guanhao, LI Hongmei, MU Baide. Optimization of Extraction Process of Flavonoids and Polyphenols from Perilla frutescens (L.) Britt Leaves and Comparison of Antioxidant Activities of Different Varieties[J]. Science and Technology of Food Industry, 2023, 44(12): 344-352. DOI: 10.13386/j.issn1002-0306.2022080165
    [3]HE Xuhua, SHI Zhijiao, WANG Anna, ZHAO Chunfang, LIU Yun, KAN Huan. Optimization of Extraction Process of Flavonoids from Aronia melanocarpas' Leaves and Analysis of Their Antioxidant and Bile Salt Binding Capacity[J]. Science and Technology of Food Industry, 2023, 44(2): 253-260. DOI: 10.13386/j.issn1002-0306.2022040316
    [4]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [5]TAN Chunyuan, YAN Jie, HUANG Huimin, ZHOU Zhijian, WU Zijun. Optimization of Ultrasonic-assisted Extraction Process of Flavonoids from Damiana by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(16): 191-198. DOI: 10.13386/j.issn1002-0306.2020120047
    [6]DUAN Zhou-wei, CHEN Ting, HE Ai, FANG Zong-zhuang, WANG Shi-ping, XIE Hui. Optimization of Purification of Flavonoids from Aloes Leaves with Macroporous Resin and Comparison of Antioxidant Capacity of Crude and Purified Flavonoids[J]. Science and Technology of Food Industry, 2020, 41(17): 161-166. DOI: 10.13386/j.issn1002-0306.2020.17.027
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SU Long, LV Feng-dan, WANG Xue-ru, FENG Lu, YAN Su-ping. Optimization of fermentation parameters by response surface methodology and the antioxidant capacity of Myrica rubra wine[J]. Science and Technology of Food Industry, 2017, (20): 146-151. DOI: 10.13386/j.issn1002-0306.2017.20.027
    [9]YANG Zhe, WAN Shan, ZHANG Qiao-hui, DONG Shi-bin, NING Ya-ping, WANG Jian-zhong. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (06): 279-284. DOI: 10.13386/j.issn1002-0306.2015.06.053
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Cited by

    Periodical cited type(4)

    1. 周春仲,郑伟清,袁晓怡,欧志坚,姜一平. 高良姜二苯庚烷化合物对3T3-L1前脂肪细胞分化的影响和机制研究. 系统医学. 2024(01): 6-9+13 .
    2. 陈少影,李晶晶,兰卫. 常用中药有效成分降脂作用研究进展. 中国实验方剂学杂志. 2023(13): 241-253 .
    3. 倪伟锋,赵大庆,倪以宇,白竹林,王思明. 人参-丁香醇提物抑制高山被孢霉脂质合成的活性评价. 食品工业科技. 2022(21): 388-395 . 本站查看
    4. 周心悦,周逸辰,陈晋,王文骏,刘东红. 胡柚及其苦味黄烷酮对糖脂代谢相关疾病的调节功能研究进展. 中国食品添加剂. 2022(12): 41-49 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return