Citation: | LI Xin, WANG Ningxiaoxuan, MEI Yuan, et al. Research Progress on the Application of Novel Non-thermal Sterilization Technologies in Fermented Fruit and Vegetable Products[J]. Science and Technology of Food Industry, 2024, 45(15): 400−408. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090007. |
[1] |
全琦, 刘伟, 左梦楠, 等. 乳酸菌发酵果蔬汁的风味研究进展[J]. 食品与发酵工业,2022,48(1):315−23. [QUAN Q, LIU W, ZUO M N, et al. Research progress on flavor of fruit and vegetable juice fermented by lactic acid bacteria[J]. Food and Fermentation Industries,2022,48(1):315−23.]
QUAN Q, LIU W, ZUO M N, et al. Research progress on flavor of fruit and vegetable juice fermented by lactic acid bacteria[J]. Food and Fermentation Industries, 2022, 48(1): 315−23.
|
[2] |
汪铃, 王亮. 传统发酵蔬菜制作工艺、品质特征及影响因素研究概况[J]. 中国酿造,2022,41(7):21−25. [WANG L, WANG L. Research on traditional fermentation vegetable production technology, quality characteristics and influencing factors[J]. China Brewing,2022,41(7):21−25.] doi: 10.11882/j.issn.0254-5071.2022.07.005
WANG L, WANG L. Research on traditional fermentation vegetable production technology, quality characteristics and influencing factors[J]. China Brewing, 2022, 41(7): 21−25. doi: 10.11882/j.issn.0254-5071.2022.07.005
|
[3] |
何鹏晖, 厍晓, 钱杨, 等. 发酵蔬菜中腐败微生物及其防控的研究进展[J]. 食品工业科技,2017,38(11):374−378,84. [HE P H, SHE X, QIAN Y, et al. Research progress of spoilage microorganisms in fermented vegetables and their control[J]. Science and Technology of Food Industry,2017,38(11):374−378,84.]
HE P H, SHE X, QIAN Y, et al. Research progress of spoilage microorganisms in fermented vegetables and their control[J]. Science and Technology of Food Industry, 2017, 38(11): 374−378,84.
|
[4] |
王黎明, 史梓男, 关志成, 等. 脉冲电场非热杀菌效果分析[J]. 高电压技术,2005(2):64−66. [WANG L M, SHI Z N, GUAN Z C, et al. Study of non-thermal microorganism inactivation by pulsed electric field[J]. High Voltage Engineering,2005(2):64−66.] doi: 10.3969/j.issn.1003-6520.2005.02.026
WANG L M, SHI Z N, GUAN Z C, et al. Study of non-thermal microorganism inactivation by pulsed electric field[J]. High Voltage Engineering, 2005(2): 64−66. doi: 10.3969/j.issn.1003-6520.2005.02.026
|
[5] |
周林燕, 廖红梅, 胡小松, 等. 食品非热杀菌研究中的科学问题分析[J]. 食品科学,2010,31(5):328−333. [[ZHOU L Y, LIAO H M, HU X S, et al. Fundamental issues of non-thermal processing in food[J]. Food Science,2010,31(5):328−333.]
[ZHOU L Y, LIAO H M, HU X S, et al. Fundamental issues of non-thermal processing in food[J]. Food Science, 2010, 31(5): 328−333.
|
[6] |
DENG L Z, MUJUMDAR A S, PAN Z, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables:A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2019,60(15):2481−2508.
|
[7] |
VAN IMPE J, SMET C, TIWARI B, et al. State of the art of nonthermal and thermal processing for inactivation of micro-organisms[J]. Journal of Applied Microbiology,2018,125(1):16−35. doi: 10.1111/jam.13751
|
[8] |
李军. 鲜榨苹果汁非热杀菌技术与设备的研究[D]. 北京: 中国农业大学, 2004. [LI J. The study on non-thermal inactivation and sterilizationtechnology & equipment of fresh apple juice[D]. Beijing:China Agricultural University, 2004.]
LI J. The study on non-thermal inactivation and sterilizationtechnology & equipment of fresh apple juice[D]. Beijing: China Agricultural University, 2004.
|
[9] |
金思渊, 谢晶. 鲜切果蔬致腐菌抑菌技术的研究进展[J]. 食品与发酵工业,2020,46(11):302−306. [JIN S Y, XIE J. Research progress of bacteriostatic technology of fresh-cut fruit and vegetable rot bacteria[J]. Food and Fermentation Industries,2020,46(11):302−306.]
JIN S Y, XIE J. Research progress of bacteriostatic technology of fresh-cut fruit and vegetable rot bacteria[J]. Food and Fermentation Industries, 2020, 46(11): 302−306.
|
[10] |
ZHANG S, MEENU M, HU L, et al. Recent progress in the synergistic bactericidal effect of high pressure and temperature processing in fruits and vegetables and related kinetics[J]. Foods,2022,11(22):3698. doi: 10.3390/foods11223698
|
[11] |
沈生文. 食品杀菌技术概述[J]. 食品安全导刊,2020(35):52. [SHENG S W. Overview of food sterilization techniques[J]. China Food Safety Magazine,2020(35):52.]
SHENG S W. Overview of food sterilization techniques[J]. China Food Safety Magazine, 2020(35): 52.
|
[12] |
JADHAV H B, ANNAPURE U S, DESHMUKH R R. Non-thermal technologies for food processing[J]. Frontiers in Nutrition,2021,8:657090. doi: 10.3389/fnut.2021.657090
|
[13] |
李明月. 非热杀菌技术在肉类产品保鲜中的应用研究进展[J]. 现代食品,2022,28(20):29−31. [LI M Y. Research progress on the application of non-thermal sterilization technology in the preservation of meat products[J]. Modern Food,2022,28(20):29−31.]
LI M Y. Research progress on the application of non-thermal sterilization technology in the preservation of meat products[J]. Modern Food, 2022, 28(20): 29−31.
|
[14] |
郁佳怡, 钱韻芳. 非热杀菌技术在水产品保鲜中的应用研究进展[J]. 肉类研究,2022,36(9):51−57. [YU J Y, QIAN Y F. Research progress on application of non-thermal sterilization technology in aquatic products preservation[J]. Meat Research,2022,36(9):51−57.]
YU J Y, QIAN Y F. Research progress on application of non-thermal sterilization technology in aquatic products preservation[J]. Meat Research, 2022, 36(9): 51−57.
|
[15] |
宋晓雪, 胡文忠, 毕阳, 等. 鲜切果蔬中致腐微生物污染及其非热杀菌的研究进展[J]. 食品工业科技,2014,35(10):351−354. [SONG X X, HU W Z, BI Y, et al. Research progress on the pollution of spoilage microorganisms in fresh-cut fruits and vegetables and their non-thermal sterilization[J]. Science and Technology of Food Industry,2014,35(10):351−354.]
SONG X X, HU W Z, BI Y, et al. Research progress on the pollution of spoilage microorganisms in fresh-cut fruits and vegetables and their non-thermal sterilization[J]. Science and Technology of Food Industry, 2014, 35(10): 351−354.
|
[16] |
陈多珍, 吴梦, 杨洋, 等. 非热杀菌技术在乳制品中的应用研究进展[J]. 包装与食品机械,2020,38(1):68−72. [CHEN D Z, WU M, YANG Y, et al. Research progress on the application of non-thermal sterilization technology in dairy products[J]. Packaging and Food Machinery,2020,38(1):68−72.]
CHEN D Z, WU M, YANG Y, et al. Research progress on the application of non-thermal sterilization technology in dairy products[J]. Packaging and Food Machinery, 2020, 38(1): 68−72.
|
[17] |
AGANOVIC K, HERTEL C, VOGEL R F, et al. Aspects of high hydrostatic pressure food processing:Perspectives on technology and food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3225−3266. doi: 10.1111/1541-4337.12763
|
[18] |
ZHANG C, LYU X, ARSHAD R N, et al. Pulsed electric field as a promising technology for solid foods processing:A review[J]. Food Chemisty,2023,403:134367. doi: 10.1016/j.foodchem.2022.134367
|
[19] |
SALEHI F. Application of pulsed light technology for fruits and vegetables disinfection:A review[J]. Journal of Applied Microbiology,2022,132(4):2521−2530. doi: 10.1111/jam.15389
|
[20] |
PANIWNYK L. Applications of ultrasound in processing of liquid foods:A review[J]. Ultrasonics Sonochemistry,2017,38:794−806. doi: 10.1016/j.ultsonch.2016.12.025
|
[21] |
HUANG M, ZHANG M, BHANDARI B. Recent development in the application of alternative sterilization technologies to prepared dishes:A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(7):1188−1196. doi: 10.1080/10408398.2017.1421140
|
[22] |
JIANG H, LIU Z, WANG S. Microwave processing:Effects and impacts on food components[J]. Critical Reviews in Food Science and Nutrition,2018,58(14):2476−89. doi: 10.1080/10408398.2017.1319322
|
[23] |
SRIRAKSHA M S, AYENAMPUDI S B, NOOR M, et al. Cold plasma technology:An insight on its disinfection efficiency of various food systems[J]. Food Science and Technology International,2023,29(4):428−41. doi: 10.1177/10820132221089169
|
[24] |
ZHOU L, BI X, XU Z, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods[J]. Critical Reviews in Food Science and Nutrition,2015,55(6):750−768. doi: 10.1080/10408398.2012.677871
|
[25] |
BUITIMEA-CANTÚA G V, RICO-ALDERETE I A, ROSTRO-ALANÍS M J, et al. Effect of high hydrostatic pressure and pulsed electric fields processes on microbial safety and quality of black/red raspberry juice[J]. Foods,2022,11(15):2342. doi: 10.3390/foods11152342
|
[26] |
让一峰, 陈晓婵, 田一雄, 等. 高压脉冲电场强化杀菌对哈密瓜汁品质的影响[J]. 食品研究与开发,2019,49(17):105−109. [RANG Y F, CHEN X C, TIAN Y X, et al. Effect of high voltage pulsed electric field on the quality of cantaloupe juice[J]. Food Research and Development,2019,49(17):105−109.]
RANG Y F, CHEN X C, TIAN Y X, et al. Effect of high voltage pulsed electric field on the quality of cantaloupe juice[J]. Food Research and Development, 2019, 49(17): 105−109.
|
[27] |
DANSHI Z, YUEYI Z, CHENGCHENG K, et al. Ultrasonic and other sterilization methods on nutrition and flavor of cloudy apple juice[J]. Ultrasonics Sonochemistry,2022,84:105975. doi: 10.1016/j.ultsonch.2022.105975
|
[28] |
韦雪, 郑鄢燕, 赵晓燕, 等. 脉冲强光联合气调包装对鲜切马铃薯杀菌及褐变的影响[J]. 新疆农业大学学报,2022,45(2):110−118. [WEI X, ZHEN Y Y, ZHAO X Y, et al. Effect of pulsed strong light combined with air-conditioned packing on sterilization and browning of fresh-cut potato[J]. Journal of Xinjiang Agricultural University,2022,45(2):110−118.]
WEI X, ZHEN Y Y, ZHAO X Y, et al. Effect of pulsed strong light combined with air-conditioned packing on sterilization and browning of fresh-cut potato[J]. Journal of Xinjiang Agricultural University, 2022, 45(2): 110−118.
|
[29] |
孟宪伟, 汤静, 王春飞, 等. 低温等离子体处理对鲜切胡萝卜品质及抗氧化活性的影响[J]. 南京农业大学学报,2023,46(6):1179−1186. [MENG X W, TANG J, WANG C F, et al. Effects of cold temperature plasma treatment on quality and antioxidant activity of freshly cut carrot[J]. Journal of Nanjing Agricultural University,2023,46(6):1179−1186.] doi: 10.7685/jnau.202211010
MENG X W, TANG J, WANG C F, et al. Effects of cold temperature plasma treatment on quality and antioxidant activity of freshly cut carrot[J]. Journal of Nanjing Agricultural University, 2023, 46(6): 1179−1186. doi: 10.7685/jnau.202211010
|
[30] |
侯新磊, 赵楠, 葛黎红, 等. 低温等离子体对低盐泡菜生花腐败的抑制及贮藏期品质的影响[J]. 食品科学,2022,43(21):282−290. [HOU X L, ZHAO N, GE L H, et al. Effect of cold temperature plasma on flower spoilage inhibition and storage quality of low salt kimchi[J]. Food Science,2022,43(21):282−290.]
HOU X L, ZHAO N, GE L H, et al. Effect of cold temperature plasma on flower spoilage inhibition and storage quality of low salt kimchi[J]. Food Science, 2022, 43(21): 282−290.
|
[31] |
LEE J H, CHOI E J, CHANG J Y, et al. Effect of high hydrostatic pressure (HHP) and supercooling storage in leaf mustard (Brassica juncea L.) kimchi:Modelling of microbial activity and preservation of physicochemical properties[J]. LWT-Food Science and Technology,2021,145:111325. doi: 10.1016/j.lwt.2021.111325
|
[32] |
ZAMBON A, GONZÁLEZ-ALONSO V, LOMOLINO G, et al. Increasing the safety and storage of pre-packed fresh-cut fruits and vegetables by supercritical CO2 process[J]. Foods,2022,12(1):21. doi: 10.3390/foods12010021
|
[33] |
高昕瑜, 吴彩云, 李天琳, 等. 植物乳杆菌发酵枣汁在冷藏期间的营养品质变化研究[J]. 中国酿造,2022,41(3):98−103. [GAO X Y, WU C Y, LI T L, et al. Study on nutritional quality changes of fermented jujube juice by Lactobacillus plantarum during cold storage[J]. China Brewing,2022,41(3):98−103.] doi: 10.11882/j.issn.0254-5071.2022.03.017
GAO X Y, WU C Y, LI T L, et al. Study on nutritional quality changes of fermented jujube juice by Lactobacillus plantarum during cold storage[J]. China Brewing, 2022, 41(3): 98−103. doi: 10.11882/j.issn.0254-5071.2022.03.017
|
[34] |
ZHOU B, ZHANG L, WANG X, et al. Inactivation of Escherichia coli O157:H7 by high hydrostatic pressure combined with gas packaging[J]. Microorganisms,2019,7(6):154. doi: 10.3390/microorganisms7060154
|
[35] |
SANTO D, GRAÇA A, NUNES C, et al. Escherichia coli and Cronobacter sakazakii in 'Tommy Atkins' minimally processed mangos:Survival, growth and effect of UV-C and electrolyzed water[J]. Food Microbiology,2018,70:49−54. doi: 10.1016/j.fm.2017.09.008
|
[36] |
彭思嘉, 侯志强, 徐贞贞, 等. 超高压和高温短时杀菌对樱桃汁品质的影响[J]. 食品工业科技,2018,39(17):71−78. [PEN S J, HOU Z Q, XU Z Z, et al. Effects of high pressure and high temperature short time sterilization on the quality of cherry juice[J]. Science and Technology of Food Industry,2018,39(17):71−78.]
PEN S J, HOU Z Q, XU Z Z, et al. Effects of high pressure and high temperature short time sterilization on the quality of cherry juice[J]. Science and Technology of Food Industry, 2018, 39(17): 71−78.
|
[37] |
OH Y J, SONG A Y, MIN S C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma[J]. International Journal of Food Microbiology,2017,249:66−71. doi: 10.1016/j.ijfoodmicro.2017.03.005
|
[38] |
TRANG D, MURAT B, CONRAD P, et al. Microbial and sensory effects of combined high hydrostatic pressure and dense phase carbon dioxide process on feijoa puree[J]. Journal of Food Science,2015,80(11):2478−2485.
|
[39] |
LEE J Y, YANG S Y, YOON K S. Control measures of pathogenic microorganisms and shelf-life extension of fresh-cut vegetables[J]. Foods,2021,10(3):655. doi: 10.3390/foods10030655
|
[40] |
MARX G, MOODY A, BERMÚDEZ-AGUIRRE D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies:high hydrostatic pressure, pulsed electric fields and thermo-sonication[J]. International Journal of Food Microbiology,2011,151(3):327−337. doi: 10.1016/j.ijfoodmicro.2011.09.027
|
[41] |
HUANG R, CHEN H. Comparison of water-assisted decontamination systems of pulsed light and ultraviolet for Salmonella inactivation on blueberry, tomato, and lettuce[J]. Journal of Food Science,2019,84(5):1145−1150. doi: 10.1111/1750-3841.14510
|
[42] |
赵虎威, 陈燕飞, 燕平梅. 泡菜发酵中微生物的研究[J]. 中国调味品,2022,47(1):211−216. [ZHAO H W, CHEN Y F, YAN P M. Study on microorganisms in pickle fermentation[J]. China Condiment,2022,47(1):211−216.]
ZHAO H W, CHEN Y F, YAN P M. Study on microorganisms in pickle fermentation[J]. China Condiment, 2022, 47(1): 211−216.
|
[43] |
ZHAO N, GE L, HUANG Y, et al. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (Radish paocai) in comparison with pasteurization processing:Insight into safety and storage stability of products[J]. Innovative Food Science & Emerging Technologies,2020,60:102300.
|
[44] |
邓扬龙. 郫县豆瓣中产气微生物的分离、鉴定及其生物特性研究[D]. 成都:西华大学, 2020. [DENG Y L. Isolation, identification and biological characteristics of aerated microorganisms from Pixian Douban [D]. Chengdu:Xihua University, 2020.]
DENG Y L. Isolation, identification and biological characteristics of aerated microorganisms from Pixian Douban [D]. Chengdu: Xihua University, 2020.
|
[45] |
MARIK C M, ZUCHEL J, SCHAFFNER D W, et al. Growth and survival of Listeria monocytogenes on intact fruit and vegetable surfaces during postharvest handling:A systematic literature review[J]. Journal of Food Protection,2020,83(1):108−128. doi: 10.4315/0362-028X.JFP-19-283
|
[46] |
PAN Y, CHENG J H, SUN D W. Cold plasma-mediated treatments for shelf life extension of fresh produce:A review of recent research developments[J]. Comprhensive Reviews in Food Science and Food Safety,2019,18(5):1312−1326. doi: 10.1111/1541-4337.12474
|
[47] |
SCHOTTROFF F, FRÖHLING A, ZUNABOVIC-PICHLER M, et al. Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes[J]. Frontiers in Microbiology,2018,9:2773. doi: 10.3389/fmicb.2018.02773
|
[48] |
NASIŁOWSKA J, SOKOŁOWSKA B, FONBERG-BROCZEK M. Long-term storage of vegetable juices treated by high hydrostatic pressure:Assurance of the microbial safety[J]. Biomed Research International,2018,2018:7389381.
|
[49] |
丁楠, 何美珊, 戈子龙, 等. 果蔬发酵制品的功效及应用研究进展[J]. 食品工业科技,2019,40(7):332−336. [DING N, HE M S, GE Z L, et al. Research progress on efficacy and application of fruit and vegetable fermented products[J]. Science and Technology of Food Industry,2019,40(7):332−336.]
DING N, HE M S, GE Z L, et al. Research progress on efficacy and application of fruit and vegetable fermented products[J]. Science and Technology of Food Industry, 2019, 40(7): 332−336.
|
[50] |
ZHANG L H, ZHA M M, LI S F, et al. Investigation on the effect of thermal sterilization versus non-thermal sterilization on the quality parameters of jujube juice fermented by Lactobacillus plantarum[J]. Journal of Food Science and Technology,2022,59(10):3765−3774. doi: 10.1007/s13197-022-05358-8
|
[51] |
刘秋豆. 益生菌发酵芒果汁的研制及其理化性质分析[D]. 武汉:华中农业大学, 2019. [LIU Q D. Preparation and physicochemical properties of mango juice fermented by probiotics[D]. Wuhan:Huazhong Agricultural University, 2019.]
LIU Q D. Preparation and physicochemical properties of mango juice fermented by probiotics[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[52] |
MA J, WANG Y, ZHAO M, et al. High hydrostatic pressure treatments improved properties of fermentation of apple juice accompanied by higher reserved Lactobacillus plantarum[J]. Foods,2023,12(3):441. doi: 10.3390/foods12030441
|
[53] |
朱香澔, 段振华, 刘艳, 等. 西番莲果汁饮料超高压灭菌工艺优化[J]. 食品工业,2018,39(11):12−18. [ZHU X H, DUAN Z H, LIU Y, et al. Optimization of ultra high pressure sterilization process for passionflower juice beverage[J]. The Food Industry,2018,39(11):12−18.]
ZHU X H, DUAN Z H, LIU Y, et al. Optimization of ultra high pressure sterilization process for passionflower juice beverage[J]. The Food Industry, 2018, 39(11): 12−18.
|
[54] |
钱静亚, 陈超, 王晨燕, 等. 介质参数对脉冲磁场杀灭枯草芽孢杆菌的影响[J]. 食品与机械,2012,28(5):8−11. [QIAN J Y, CHEN C, WANG C Y, et al. Effect of medium parameters on killing Bacillus subtilis by pulsed magnetic field[J]. Food and Machinery,2012,28(5):8−11.]
QIAN J Y, CHEN C, WANG C Y, et al. Effect of medium parameters on killing Bacillus subtilis by pulsed magnetic field[J]. Food and Machinery, 2012, 28(5): 8−11.
|
[55] |
MURANYI P, WUNDERLICH J, HEISE M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma[J]. Journal of Applied Microbiology,2008,104(6):1659−1666. doi: 10.1111/j.1365-2672.2007.03691.x
|
[56] |
洪晨, 潘忠礼, 王蓓, 等. 脉冲强光对大肠杆菌的灭活效果及其动力学模型的建立[J]. 食品工业科技,2018,39(18):105−109,116. [HONG C, PAN Z L, WANG P, et al. Inactivation effect of pulsed light on Escherichia coli and the establishment of its kinetic model[J]. Science and Technology of Food Industry,2018,39(18):105−109,116.]
HONG C, PAN Z L, WANG P, et al. Inactivation effect of pulsed light on Escherichia coli and the establishment of its kinetic model[J]. Science and Technology of Food Industry, 2018, 39(18): 105−109,116.
|
[57] |
FENG X, ZHOU Z, WANG X, et al. Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend[J]. Foods,2020,9(2):218. doi: 10.3390/foods9020218
|
[58] |
FAN X, LÜ X, MENG L, et al. Effect of microwave sterilization on maturation time and quality of low-salt sufu[J]. Food Science & Nutrition,2020,8(1):584−593.
|
[59] |
WU X, ZHAO W, ZENG X, et al. Effects of cold plasma treatment on cherry quality during storage[J]. Food Science and Technology International,2021,27(5):441−455. doi: 10.1177/1082013220957134
|
[60] |
孙新. 高密度二氧化碳处理对胡萝卜泡菜品质的影响[D]. 沈阳:沈阳农业大学, 2017. [SUN X. Effect of high density carbon dioxide treatment on quality of carrot pickle[D]. Shenyang:Shenyang Agricultural University, 2017.]
SUN X. Effect of high density carbon dioxide treatment on quality of carrot pickle[D]. Shenyang: Shenyang Agricultural University, 2017.
|
[61] |
YU Y, ZHAO J, LIU J, et al. Improving the function of pickle insoluble dietary fiber by coupling enzymatic hydrolysis with HHP treatment[J]. Journal of Food Science and Technology,2022,59(12):4634−4643. doi: 10.1007/s13197-022-05542-w
|
[62] |
FENG X, CHEN H, LIANG Y, et al. Effects of electron beam irradiation treatment on the structural and functional properties of okara insoluble dietary fiber[J]. Journal of the Science of Food and Agriculture,2023,103(1):195−204. doi: 10.1002/jsfa.12131
|
[63] |
CHEN Y R, WU S J. Effects of high-hydrostatic pressure and high-pressure homogenization on the biological activity of cabbage dietary fiber[J]. Journal of the Science of Food and Agriculture,2022,102(14):6299−6308. doi: 10.1002/jsfa.11980
|
[64] |
李爽. 超声处理及纳豆芽孢杆菌发酵对豆渣不溶性膳食纤维改性的研究[D]. 哈尔滨:东北农业大学, 2022. [LI S. Study on modification of insoluble dietary fiber from soybean residue by ultrasonic treatment and Bacillus natto fermentation[D]. Harbin:Northeast Agricultural University, 2022.]
LI S. Study on modification of insoluble dietary fiber from soybean residue by ultrasonic treatment and Bacillus natto fermentation[D]. Harbin: Northeast Agricultural University, 2022.
|
[65] |
MIESZCZAKOWSKA-FRĄC M, CELEJEWSKA K, PŁOCHARSKI W. Impact of innovative technologies on the content of vitamin C and its bioavailability from processed fruit and vegetable products[J]. Antioxidants (Basel),2021,10(1):54. doi: 10.3390/antiox10010054
|
[66] |
李树锦, 高美须, 刘超超, 等. 辐照对鲜切蔬菜维生素C及亚硝酸盐的影响[J]. 中国食品学报,2015,15(9):224−230. [LI S J, GAO M X, LIU C C, et al. Effects of irradiation on vitamin C and nitrite in fresh-cut vegetables[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(9):224−230.]
LI S J, GAO M X, LIU C C, et al. Effects of irradiation on vitamin C and nitrite in fresh-cut vegetables[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(9): 224−230.
|
[67] |
VIACAVA F, RAMOS-PARRA P A, WELTI-CHANES J, et al. High hydrostatic pressure processing of whole carrots:Effect of static and multi-pulsed mild intensity hydrostatic pressure treatments on bioactive compounds[J]. Foods,2021,10(2):219. doi: 10.3390/foods10020219
|
[68] |
NIEDŹWIEDŹ I, SIMEONOV V, WAŚKO A, et al. Comparison of the effect of cold plasma with conventional preservation methods on red wine quality using chemometrics analysis[J]. Molecules,2022,27(20):7048. doi: 10.3390/molecules27207048
|
[69] |
YUAN L, LAO F, SHI X, et al. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices[J]. Ultrasonics Sonochemistry,2022,90:106219. doi: 10.1016/j.ultsonch.2022.106219
|
[70] |
黄玉立, 赵楠, 黄庆, 等. 发酵蔬菜风味物质形成机制及影响因素研究进展[J]. 食品与发酵工业,2021,47(24):279−285. [HUANG Y L, ZHAO N, HUANG Q, et al. Research progress on the formation mechanism and influencing factors of fermented vegetable flavor substances[J]. Food and Fermentation Industries,2021,47(24):279−285.]
HUANG Y L, ZHAO N, HUANG Q, et al. Research progress on the formation mechanism and influencing factors of fermented vegetable flavor substances[J]. Food and Fermentation Industries, 2021, 47(24): 279−285.
|
[71] |
杜喜玲. 超高压处理对泡菜风味的影响[J]. 食品安全导刊,2017(24):99. [DU X L. Effect of ultra-high pressure treatment on flavor of kimchi[J]. China Food Safety Magazine,2017(24):99.] doi: 10.3969/j.issn.1674-0270.2017.24.096
DU X L. Effect of ultra-high pressure treatment on flavor of kimchi[J]. China Food Safety Magazine, 2017(24): 99. doi: 10.3969/j.issn.1674-0270.2017.24.096
|
[72] |
YUAN L, XU F, XU Y, et al. Production of marinated chinese lotus root slices using high-pressure processing as an alternative to traditional thermal-and-soaking procedure[J]. Molecules,2022,27(19):6506. doi: 10.3390/molecules27196506
|
[73] |
高苏敏, 吴丹璇, 高子武, 等. 超声波协同低盐处理对萝卜泡菜水菌群分布和特征风味的影响[J]. 食品与发酵工业, 2022, 48(15):154-163. [GAO S M, WU D X, GAO Z W, et al. Effects of ultrasonic combined with low salt treatment on the distribution of water bacteria and characteristic flavor of radish pickles [J]. Food and Fermentation Industries 2022, 48(15):154-163.]
GAO S M, WU D X, GAO Z W, et al. Effects of ultrasonic combined with low salt treatment on the distribution of water bacteria and characteristic flavor of radish pickles [J]. Food and Fermentation Industries 2022, 48(15): 154-163.
|
[74] |
杨姗, 王卫, 赵楠, 等. 发酵蔬菜色泽形成机制及影响因素研究进展[J]. 食品科学,2022,43(23):269−276. [YANG S, WANG W, ZHAO N, et al. Research progress on color formation mechanism and influencing factors of fermented vegetables[J]. Food Science,2022,43(23):269−276.] doi: 10.7506/spkx1002-6630-20220121-216
YANG S, WANG W, ZHAO N, et al. Research progress on color formation mechanism and influencing factors of fermented vegetables[J]. Food Science, 2022, 43(23): 269−276. doi: 10.7506/spkx1002-6630-20220121-216
|
[75] |
MARSZAŁEK K, WOŹNIAK Ł, KRUSZEWSKI B, et al. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables[J]. International Journal of Molecular Sciences,2017,18(2):277. doi: 10.3390/ijms18020277
|
[76] |
MA Y, XU Y, CHEN Y, et al. Effect of different sterilization methods on the microbial and physicochemical changes in prunus mume juice during storage[J]. Molecules,2022,27(4):1197. doi: 10.3390/molecules27041197
|
[77] |
刘莹萍, 崔莉, 牛丽影, 等. 微波对植物乳杆菌的杀灭作用及其在莴苣泡菜中的应用[J]. 食品工业科技,2016,37(24):245−248. [LIU Y P, CUI L, NIU L Y, et al. The killing effect of microwave on Lactobacillus plantarum and its application in lettuce pickle[J]. Science and Technology of Food Industry,2016,37(24):245−248.]
LIU Y P, CUI L, NIU L Y, et al. The killing effect of microwave on Lactobacillus plantarum and its application in lettuce pickle[J]. Science and Technology of Food Industry, 2016, 37(24): 245−248.
|
[78] |
赵楠, 葛黎红, 张恺熹, 等. 微热辅助低温等离子体杀菌技术对榨菜贮藏期品质劣变的影响[J]. 中国酿造,2023,42(2):151−156. [ZHAO N, GE L H, ZHANG K X, et al. Effect of mild heating-assisted cold plasma sterilization on quality deterioration of zhacai during storage[J]. China Brewing,2023,42(2):151−156.]
ZHAO N, GE L H, ZHANG K X, et al. Effect of mild heating-assisted cold plasma sterilization on quality deterioration of zhacai during storage[J]. China Brewing, 2023, 42(2): 151−156.
|
[79] |
李昌宝, 辛明, 孙宇, 等. 杀菌方式对低盐腌渍黄瓜的品质影响[J]. 食品工业科技,2020,41(12):14−20. [LI C B, XIN M, SUN Y, et al. Effect of sterilization method on the quality of pickled cucumber with low salt[J]. Science and Technology of Food Industry,2020,41(12):14−20.]
LI C B, XIN M, SUN Y, et al. Effect of sterilization method on the quality of pickled cucumber with low salt[J]. Science and Technology of Food Industry, 2020, 41(12): 14−20.
|
[80] |
王媛. 非热等离子体作用下的泡菜亚硝酸盐生成及降解的微生物调控[D]. 镇江:江苏大学, 2022. [WANG Y. Microbial regulation of nitrite production and degradation in kimchi under non-thermal plasma[J]. Zhenjiang:Jiangsu University, 2022.]
WANG Y. Microbial regulation of nitrite production and degradation in kimchi under non-thermal plasma[J]. Zhenjiang: Jiangsu University, 2022.
|
[81] |
NIEDŹWIEDŹ I, PŁOTKA-WASYLKA J, KAPUSTA I, et al. The impact of cold plasma on the phenolic composition and biogenic amine content of red wine[J]. Food Chemistry,2022,381:132257. doi: 10.1016/j.foodchem.2022.132257
|