LI Xin, WANG Ningxiaoxuan, MEI Yuan, et al. Research Progress on the Application of Novel Non-thermal Sterilization Technologies in Fermented Fruit and Vegetable Products[J]. Science and Technology of Food Industry, 2024, 45(15): 400−408. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090007.
Citation: LI Xin, WANG Ningxiaoxuan, MEI Yuan, et al. Research Progress on the Application of Novel Non-thermal Sterilization Technologies in Fermented Fruit and Vegetable Products[J]. Science and Technology of Food Industry, 2024, 45(15): 400−408. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090007.

Research Progress on the Application of Novel Non-thermal Sterilization Technologies in Fermented Fruit and Vegetable Products

More Information
  • Received Date: September 04, 2023
  • Available Online: June 03, 2024
  • Fermented fruit and vegetable products are an important part of traditional fermented food in China. During production, fresh vegetables and fruits are used as raw materials. The fermentation is conducted by the interactions between microorganisms including lactic acid bacteria and fungi which are naturally carried by raw materials. After fermentation, the composition and quantity of microorganisms in fruits and vegetables tend to become out of control, which often leads to post-acidification, softening, spoilage and other problems. Therefore, the development of sterilization technology suitable for fermented fruit and vegetable products has important industrial value. Compared with the destructive effect of traditional heat sterilization, the non-thermal sterilization technology without heating can not only kill the spoilage and pathogenic microorganisms, but also reduce the impact on probiotics, and greatly alleviate the deterioration of fermented fruit and vegetable products. Therefore, non-thermal sterilization technologies have gradually become one of the research hotspots in the field of fermented fruit and vegetable products sterilization. In this paper, the application progress of common non-thermal sterilization technologies in fermented fruit and vegetable products is reviewed. The sterile effect and influencing factors of non-thermal sterilization technologies in fermented fruit and vegetable products are summarized. Its influence on quality and safety attributes of products is discussed. The aim of this study is to provide a theoretical basis for the large-scale application of non-thermal sterilization technologies in the industrial production of fermented fruit and vegetable products.
  • [1]
    全琦, 刘伟, 左梦楠, 等. 乳酸菌发酵果蔬汁的风味研究进展[J]. 食品与发酵工业,2022,48(1):315−23. [QUAN Q, LIU W, ZUO M N, et al. Research progress on flavor of fruit and vegetable juice fermented by lactic acid bacteria[J]. Food and Fermentation Industries,2022,48(1):315−23.]

    QUAN Q, LIU W, ZUO M N, et al. Research progress on flavor of fruit and vegetable juice fermented by lactic acid bacteria[J]. Food and Fermentation Industries, 2022, 48(1): 315−23.
    [2]
    汪铃, 王亮. 传统发酵蔬菜制作工艺、品质特征及影响因素研究概况[J]. 中国酿造,2022,41(7):21−25. [WANG L, WANG L. Research on traditional fermentation vegetable production technology, quality characteristics and influencing factors[J]. China Brewing,2022,41(7):21−25.] doi: 10.11882/j.issn.0254-5071.2022.07.005

    WANG L, WANG L. Research on traditional fermentation vegetable production technology, quality characteristics and influencing factors[J]. China Brewing, 2022, 41(7): 21−25. doi: 10.11882/j.issn.0254-5071.2022.07.005
    [3]
    何鹏晖, 厍晓, 钱杨, 等. 发酵蔬菜中腐败微生物及其防控的研究进展[J]. 食品工业科技,2017,38(11):374−378,84. [HE P H, SHE X, QIAN Y, et al. Research progress of spoilage microorganisms in fermented vegetables and their control[J]. Science and Technology of Food Industry,2017,38(11):374−378,84.]

    HE P H, SHE X, QIAN Y, et al. Research progress of spoilage microorganisms in fermented vegetables and their control[J]. Science and Technology of Food Industry, 2017, 38(11): 374−378,84.
    [4]
    王黎明, 史梓男, 关志成, 等. 脉冲电场非热杀菌效果分析[J]. 高电压技术,2005(2):64−66. [WANG L M, SHI Z N, GUAN Z C, et al. Study of non-thermal microorganism inactivation by pulsed electric field[J]. High Voltage Engineering,2005(2):64−66.] doi: 10.3969/j.issn.1003-6520.2005.02.026

    WANG L M, SHI Z N, GUAN Z C, et al. Study of non-thermal microorganism inactivation by pulsed electric field[J]. High Voltage Engineering, 2005(2): 64−66. doi: 10.3969/j.issn.1003-6520.2005.02.026
    [5]
    周林燕, 廖红梅, 胡小松, 等. 食品非热杀菌研究中的科学问题分析[J]. 食品科学,2010,31(5):328−333. [[ZHOU L Y, LIAO H M, HU X S, et al. Fundamental issues of non-thermal processing in food[J]. Food Science,2010,31(5):328−333.]

    [ZHOU L Y, LIAO H M, HU X S, et al. Fundamental issues of non-thermal processing in food[J]. Food Science, 2010, 31(5): 328−333.
    [6]
    DENG L Z, MUJUMDAR A S, PAN Z, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables:A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2019,60(15):2481−2508.
    [7]
    VAN IMPE J, SMET C, TIWARI B, et al. State of the art of nonthermal and thermal processing for inactivation of micro-organisms[J]. Journal of Applied Microbiology,2018,125(1):16−35. doi: 10.1111/jam.13751
    [8]
    李军. 鲜榨苹果汁非热杀菌技术与设备的研究[D]. 北京: 中国农业大学, 2004. [LI J. The study on non-thermal inactivation and sterilizationtechnology & equipment of fresh apple juice[D]. Beijing:China Agricultural University, 2004.]

    LI J. The study on non-thermal inactivation and sterilizationtechnology & equipment of fresh apple juice[D]. Beijing: China Agricultural University, 2004.
    [9]
    金思渊, 谢晶. 鲜切果蔬致腐菌抑菌技术的研究进展[J]. 食品与发酵工业,2020,46(11):302−306. [JIN S Y, XIE J. Research progress of bacteriostatic technology of fresh-cut fruit and vegetable rot bacteria[J]. Food and Fermentation Industries,2020,46(11):302−306.]

    JIN S Y, XIE J. Research progress of bacteriostatic technology of fresh-cut fruit and vegetable rot bacteria[J]. Food and Fermentation Industries, 2020, 46(11): 302−306.
    [10]
    ZHANG S, MEENU M, HU L, et al. Recent progress in the synergistic bactericidal effect of high pressure and temperature processing in fruits and vegetables and related kinetics[J]. Foods,2022,11(22):3698. doi: 10.3390/foods11223698
    [11]
    沈生文. 食品杀菌技术概述[J]. 食品安全导刊,2020(35):52. [SHENG S W. Overview of food sterilization techniques[J]. China Food Safety Magazine,2020(35):52.]

    SHENG S W. Overview of food sterilization techniques[J]. China Food Safety Magazine, 2020(35): 52.
    [12]
    JADHAV H B, ANNAPURE U S, DESHMUKH R R. Non-thermal technologies for food processing[J]. Frontiers in Nutrition,2021,8:657090. doi: 10.3389/fnut.2021.657090
    [13]
    李明月. 非热杀菌技术在肉类产品保鲜中的应用研究进展[J]. 现代食品,2022,28(20):29−31. [LI M Y. Research progress on the application of non-thermal sterilization technology in the preservation of meat products[J]. Modern Food,2022,28(20):29−31.]

    LI M Y. Research progress on the application of non-thermal sterilization technology in the preservation of meat products[J]. Modern Food, 2022, 28(20): 29−31.
    [14]
    郁佳怡, 钱韻芳. 非热杀菌技术在水产品保鲜中的应用研究进展[J]. 肉类研究,2022,36(9):51−57. [YU J Y, QIAN Y F. Research progress on application of non-thermal sterilization technology in aquatic products preservation[J]. Meat Research,2022,36(9):51−57.]

    YU J Y, QIAN Y F. Research progress on application of non-thermal sterilization technology in aquatic products preservation[J]. Meat Research, 2022, 36(9): 51−57.
    [15]
    宋晓雪, 胡文忠, 毕阳, 等. 鲜切果蔬中致腐微生物污染及其非热杀菌的研究进展[J]. 食品工业科技,2014,35(10):351−354. [SONG X X, HU W Z, BI Y, et al. Research progress on the pollution of spoilage microorganisms in fresh-cut fruits and vegetables and their non-thermal sterilization[J]. Science and Technology of Food Industry,2014,35(10):351−354.]

    SONG X X, HU W Z, BI Y, et al. Research progress on the pollution of spoilage microorganisms in fresh-cut fruits and vegetables and their non-thermal sterilization[J]. Science and Technology of Food Industry, 2014, 35(10): 351−354.
    [16]
    陈多珍, 吴梦, 杨洋, 等. 非热杀菌技术在乳制品中的应用研究进展[J]. 包装与食品机械,2020,38(1):68−72. [CHEN D Z, WU M, YANG Y, et al. Research progress on the application of non-thermal sterilization technology in dairy products[J]. Packaging and Food Machinery,2020,38(1):68−72.]

    CHEN D Z, WU M, YANG Y, et al. Research progress on the application of non-thermal sterilization technology in dairy products[J]. Packaging and Food Machinery, 2020, 38(1): 68−72.
    [17]
    AGANOVIC K, HERTEL C, VOGEL R F, et al. Aspects of high hydrostatic pressure food processing:Perspectives on technology and food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3225−3266. doi: 10.1111/1541-4337.12763
    [18]
    ZHANG C, LYU X, ARSHAD R N, et al. Pulsed electric field as a promising technology for solid foods processing:A review[J]. Food Chemisty,2023,403:134367. doi: 10.1016/j.foodchem.2022.134367
    [19]
    SALEHI F. Application of pulsed light technology for fruits and vegetables disinfection:A review[J]. Journal of Applied Microbiology,2022,132(4):2521−2530. doi: 10.1111/jam.15389
    [20]
    PANIWNYK L. Applications of ultrasound in processing of liquid foods:A review[J]. Ultrasonics Sonochemistry,2017,38:794−806. doi: 10.1016/j.ultsonch.2016.12.025
    [21]
    HUANG M, ZHANG M, BHANDARI B. Recent development in the application of alternative sterilization technologies to prepared dishes:A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(7):1188−1196. doi: 10.1080/10408398.2017.1421140
    [22]
    JIANG H, LIU Z, WANG S. Microwave processing:Effects and impacts on food components[J]. Critical Reviews in Food Science and Nutrition,2018,58(14):2476−89. doi: 10.1080/10408398.2017.1319322
    [23]
    SRIRAKSHA M S, AYENAMPUDI S B, NOOR M, et al. Cold plasma technology:An insight on its disinfection efficiency of various food systems[J]. Food Science and Technology International,2023,29(4):428−41. doi: 10.1177/10820132221089169
    [24]
    ZHOU L, BI X, XU Z, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods[J]. Critical Reviews in Food Science and Nutrition,2015,55(6):750−768. doi: 10.1080/10408398.2012.677871
    [25]
    BUITIMEA-CANTÚA G V, RICO-ALDERETE I A, ROSTRO-ALANÍS M J, et al. Effect of high hydrostatic pressure and pulsed electric fields processes on microbial safety and quality of black/red raspberry juice[J]. Foods,2022,11(15):2342. doi: 10.3390/foods11152342
    [26]
    让一峰, 陈晓婵, 田一雄, 等. 高压脉冲电场强化杀菌对哈密瓜汁品质的影响[J]. 食品研究与开发,2019,49(17):105−109. [RANG Y F, CHEN X C, TIAN Y X, et al. Effect of high voltage pulsed electric field on the quality of cantaloupe juice[J]. Food Research and Development,2019,49(17):105−109.]

    RANG Y F, CHEN X C, TIAN Y X, et al. Effect of high voltage pulsed electric field on the quality of cantaloupe juice[J]. Food Research and Development, 2019, 49(17): 105−109.
    [27]
    DANSHI Z, YUEYI Z, CHENGCHENG K, et al. Ultrasonic and other sterilization methods on nutrition and flavor of cloudy apple juice[J]. Ultrasonics Sonochemistry,2022,84:105975. doi: 10.1016/j.ultsonch.2022.105975
    [28]
    韦雪, 郑鄢燕, 赵晓燕, 等. 脉冲强光联合气调包装对鲜切马铃薯杀菌及褐变的影响[J]. 新疆农业大学学报,2022,45(2):110−118. [WEI X, ZHEN Y Y, ZHAO X Y, et al. Effect of pulsed strong light combined with air-conditioned packing on sterilization and browning of fresh-cut potato[J]. Journal of Xinjiang Agricultural University,2022,45(2):110−118.]

    WEI X, ZHEN Y Y, ZHAO X Y, et al. Effect of pulsed strong light combined with air-conditioned packing on sterilization and browning of fresh-cut potato[J]. Journal of Xinjiang Agricultural University, 2022, 45(2): 110−118.
    [29]
    孟宪伟, 汤静, 王春飞, 等. 低温等离子体处理对鲜切胡萝卜品质及抗氧化活性的影响[J]. 南京农业大学学报,2023,46(6):1179−1186. [MENG X W, TANG J, WANG C F, et al. Effects of cold temperature plasma treatment on quality and antioxidant activity of freshly cut carrot[J]. Journal of Nanjing Agricultural University,2023,46(6):1179−1186.] doi: 10.7685/jnau.202211010

    MENG X W, TANG J, WANG C F, et al. Effects of cold temperature plasma treatment on quality and antioxidant activity of freshly cut carrot[J]. Journal of Nanjing Agricultural University, 2023, 46(6): 1179−1186. doi: 10.7685/jnau.202211010
    [30]
    侯新磊, 赵楠, 葛黎红, 等. 低温等离子体对低盐泡菜生花腐败的抑制及贮藏期品质的影响[J]. 食品科学,2022,43(21):282−290. [HOU X L, ZHAO N, GE L H, et al. Effect of cold temperature plasma on flower spoilage inhibition and storage quality of low salt kimchi[J]. Food Science,2022,43(21):282−290.]

    HOU X L, ZHAO N, GE L H, et al. Effect of cold temperature plasma on flower spoilage inhibition and storage quality of low salt kimchi[J]. Food Science, 2022, 43(21): 282−290.
    [31]
    LEE J H, CHOI E J, CHANG J Y, et al. Effect of high hydrostatic pressure (HHP) and supercooling storage in leaf mustard (Brassica juncea L.) kimchi:Modelling of microbial activity and preservation of physicochemical properties[J]. LWT-Food Science and Technology,2021,145:111325. doi: 10.1016/j.lwt.2021.111325
    [32]
    ZAMBON A, GONZÁLEZ-ALONSO V, LOMOLINO G, et al. Increasing the safety and storage of pre-packed fresh-cut fruits and vegetables by supercritical CO2 process[J]. Foods,2022,12(1):21. doi: 10.3390/foods12010021
    [33]
    高昕瑜, 吴彩云, 李天琳, 等. 植物乳杆菌发酵枣汁在冷藏期间的营养品质变化研究[J]. 中国酿造,2022,41(3):98−103. [GAO X Y, WU C Y, LI T L, et al. Study on nutritional quality changes of fermented jujube juice by Lactobacillus plantarum during cold storage[J]. China Brewing,2022,41(3):98−103.] doi: 10.11882/j.issn.0254-5071.2022.03.017

    GAO X Y, WU C Y, LI T L, et al. Study on nutritional quality changes of fermented jujube juice by Lactobacillus plantarum during cold storage[J]. China Brewing, 2022, 41(3): 98−103. doi: 10.11882/j.issn.0254-5071.2022.03.017
    [34]
    ZHOU B, ZHANG L, WANG X, et al. Inactivation of Escherichia coli O157:H7 by high hydrostatic pressure combined with gas packaging[J]. Microorganisms,2019,7(6):154. doi: 10.3390/microorganisms7060154
    [35]
    SANTO D, GRAÇA A, NUNES C, et al. Escherichia coli and Cronobacter sakazakii in 'Tommy Atkins' minimally processed mangos:Survival, growth and effect of UV-C and electrolyzed water[J]. Food Microbiology,2018,70:49−54. doi: 10.1016/j.fm.2017.09.008
    [36]
    彭思嘉, 侯志强, 徐贞贞, 等. 超高压和高温短时杀菌对樱桃汁品质的影响[J]. 食品工业科技,2018,39(17):71−78. [PEN S J, HOU Z Q, XU Z Z, et al. Effects of high pressure and high temperature short time sterilization on the quality of cherry juice[J]. Science and Technology of Food Industry,2018,39(17):71−78.]

    PEN S J, HOU Z Q, XU Z Z, et al. Effects of high pressure and high temperature short time sterilization on the quality of cherry juice[J]. Science and Technology of Food Industry, 2018, 39(17): 71−78.
    [37]
    OH Y J, SONG A Y, MIN S C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma[J]. International Journal of Food Microbiology,2017,249:66−71. doi: 10.1016/j.ijfoodmicro.2017.03.005
    [38]
    TRANG D, MURAT B, CONRAD P, et al. Microbial and sensory effects of combined high hydrostatic pressure and dense phase carbon dioxide process on feijoa puree[J]. Journal of Food Science,2015,80(11):2478−2485.
    [39]
    LEE J Y, YANG S Y, YOON K S. Control measures of pathogenic microorganisms and shelf-life extension of fresh-cut vegetables[J]. Foods,2021,10(3):655. doi: 10.3390/foods10030655
    [40]
    MARX G, MOODY A, BERMÚDEZ-AGUIRRE D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies:high hydrostatic pressure, pulsed electric fields and thermo-sonication[J]. International Journal of Food Microbiology,2011,151(3):327−337. doi: 10.1016/j.ijfoodmicro.2011.09.027
    [41]
    HUANG R, CHEN H. Comparison of water-assisted decontamination systems of pulsed light and ultraviolet for Salmonella inactivation on blueberry, tomato, and lettuce[J]. Journal of Food Science,2019,84(5):1145−1150. doi: 10.1111/1750-3841.14510
    [42]
    赵虎威, 陈燕飞, 燕平梅. 泡菜发酵中微生物的研究[J]. 中国调味品,2022,47(1):211−216. [ZHAO H W, CHEN Y F, YAN P M. Study on microorganisms in pickle fermentation[J]. China Condiment,2022,47(1):211−216.]

    ZHAO H W, CHEN Y F, YAN P M. Study on microorganisms in pickle fermentation[J]. China Condiment, 2022, 47(1): 211−216.
    [43]
    ZHAO N, GE L, HUANG Y, et al. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (Radish paocai) in comparison with pasteurization processing:Insight into safety and storage stability of products[J]. Innovative Food Science & Emerging Technologies,2020,60:102300.
    [44]
    邓扬龙. 郫县豆瓣中产气微生物的分离、鉴定及其生物特性研究[D]. 成都:西华大学, 2020. [DENG Y L. Isolation, identification and biological characteristics of aerated microorganisms from Pixian Douban [D]. Chengdu:Xihua University, 2020.]

    DENG Y L. Isolation, identification and biological characteristics of aerated microorganisms from Pixian Douban [D]. Chengdu: Xihua University, 2020.
    [45]
    MARIK C M, ZUCHEL J, SCHAFFNER D W, et al. Growth and survival of Listeria monocytogenes on intact fruit and vegetable surfaces during postharvest handling:A systematic literature review[J]. Journal of Food Protection,2020,83(1):108−128. doi: 10.4315/0362-028X.JFP-19-283
    [46]
    PAN Y, CHENG J H, SUN D W. Cold plasma-mediated treatments for shelf life extension of fresh produce:A review of recent research developments[J]. Comprhensive Reviews in Food Science and Food Safety,2019,18(5):1312−1326. doi: 10.1111/1541-4337.12474
    [47]
    SCHOTTROFF F, FRÖHLING A, ZUNABOVIC-PICHLER M, et al. Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes[J]. Frontiers in Microbiology,2018,9:2773. doi: 10.3389/fmicb.2018.02773
    [48]
    NASIŁOWSKA J, SOKOŁOWSKA B, FONBERG-BROCZEK M. Long-term storage of vegetable juices treated by high hydrostatic pressure:Assurance of the microbial safety[J]. Biomed Research International,2018,2018:7389381.
    [49]
    丁楠, 何美珊, 戈子龙, 等. 果蔬发酵制品的功效及应用研究进展[J]. 食品工业科技,2019,40(7):332−336. [DING N, HE M S, GE Z L, et al. Research progress on efficacy and application of fruit and vegetable fermented products[J]. Science and Technology of Food Industry,2019,40(7):332−336.]

    DING N, HE M S, GE Z L, et al. Research progress on efficacy and application of fruit and vegetable fermented products[J]. Science and Technology of Food Industry, 2019, 40(7): 332−336.
    [50]
    ZHANG L H, ZHA M M, LI S F, et al. Investigation on the effect of thermal sterilization versus non-thermal sterilization on the quality parameters of jujube juice fermented by Lactobacillus plantarum[J]. Journal of Food Science and Technology,2022,59(10):3765−3774. doi: 10.1007/s13197-022-05358-8
    [51]
    刘秋豆. 益生菌发酵芒果汁的研制及其理化性质分析[D]. 武汉:华中农业大学, 2019. [LIU Q D. Preparation and physicochemical properties of mango juice fermented by probiotics[D]. Wuhan:Huazhong Agricultural University, 2019.]

    LIU Q D. Preparation and physicochemical properties of mango juice fermented by probiotics[D]. Wuhan: Huazhong Agricultural University, 2019.
    [52]
    MA J, WANG Y, ZHAO M, et al. High hydrostatic pressure treatments improved properties of fermentation of apple juice accompanied by higher reserved Lactobacillus plantarum[J]. Foods,2023,12(3):441. doi: 10.3390/foods12030441
    [53]
    朱香澔, 段振华, 刘艳, 等. 西番莲果汁饮料超高压灭菌工艺优化[J]. 食品工业,2018,39(11):12−18. [ZHU X H, DUAN Z H, LIU Y, et al. Optimization of ultra high pressure sterilization process for passionflower juice beverage[J]. The Food Industry,2018,39(11):12−18.]

    ZHU X H, DUAN Z H, LIU Y, et al. Optimization of ultra high pressure sterilization process for passionflower juice beverage[J]. The Food Industry, 2018, 39(11): 12−18.
    [54]
    钱静亚, 陈超, 王晨燕, 等. 介质参数对脉冲磁场杀灭枯草芽孢杆菌的影响[J]. 食品与机械,2012,28(5):8−11. [QIAN J Y, CHEN C, WANG C Y, et al. Effect of medium parameters on killing Bacillus subtilis by pulsed magnetic field[J]. Food and Machinery,2012,28(5):8−11.]

    QIAN J Y, CHEN C, WANG C Y, et al. Effect of medium parameters on killing Bacillus subtilis by pulsed magnetic field[J]. Food and Machinery, 2012, 28(5): 8−11.
    [55]
    MURANYI P, WUNDERLICH J, HEISE M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma[J]. Journal of Applied Microbiology,2008,104(6):1659−1666. doi: 10.1111/j.1365-2672.2007.03691.x
    [56]
    洪晨, 潘忠礼, 王蓓, 等. 脉冲强光对大肠杆菌的灭活效果及其动力学模型的建立[J]. 食品工业科技,2018,39(18):105−109,116. [HONG C, PAN Z L, WANG P, et al. Inactivation effect of pulsed light on Escherichia coli and the establishment of its kinetic model[J]. Science and Technology of Food Industry,2018,39(18):105−109,116.]

    HONG C, PAN Z L, WANG P, et al. Inactivation effect of pulsed light on Escherichia coli and the establishment of its kinetic model[J]. Science and Technology of Food Industry, 2018, 39(18): 105−109,116.
    [57]
    FENG X, ZHOU Z, WANG X, et al. Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend[J]. Foods,2020,9(2):218. doi: 10.3390/foods9020218
    [58]
    FAN X, LÜ X, MENG L, et al. Effect of microwave sterilization on maturation time and quality of low-salt sufu[J]. Food Science & Nutrition,2020,8(1):584−593.
    [59]
    WU X, ZHAO W, ZENG X, et al. Effects of cold plasma treatment on cherry quality during storage[J]. Food Science and Technology International,2021,27(5):441−455. doi: 10.1177/1082013220957134
    [60]
    孙新. 高密度二氧化碳处理对胡萝卜泡菜品质的影响[D]. 沈阳:沈阳农业大学, 2017. [SUN X. Effect of high density carbon dioxide treatment on quality of carrot pickle[D]. Shenyang:Shenyang Agricultural University, 2017.]

    SUN X. Effect of high density carbon dioxide treatment on quality of carrot pickle[D]. Shenyang: Shenyang Agricultural University, 2017.
    [61]
    YU Y, ZHAO J, LIU J, et al. Improving the function of pickle insoluble dietary fiber by coupling enzymatic hydrolysis with HHP treatment[J]. Journal of Food Science and Technology,2022,59(12):4634−4643. doi: 10.1007/s13197-022-05542-w
    [62]
    FENG X, CHEN H, LIANG Y, et al. Effects of electron beam irradiation treatment on the structural and functional properties of okara insoluble dietary fiber[J]. Journal of the Science of Food and Agriculture,2023,103(1):195−204. doi: 10.1002/jsfa.12131
    [63]
    CHEN Y R, WU S J. Effects of high-hydrostatic pressure and high-pressure homogenization on the biological activity of cabbage dietary fiber[J]. Journal of the Science of Food and Agriculture,2022,102(14):6299−6308. doi: 10.1002/jsfa.11980
    [64]
    李爽. 超声处理及纳豆芽孢杆菌发酵对豆渣不溶性膳食纤维改性的研究[D]. 哈尔滨:东北农业大学, 2022. [LI S. Study on modification of insoluble dietary fiber from soybean residue by ultrasonic treatment and Bacillus natto fermentation[D]. Harbin:Northeast Agricultural University, 2022.]

    LI S. Study on modification of insoluble dietary fiber from soybean residue by ultrasonic treatment and Bacillus natto fermentation[D]. Harbin: Northeast Agricultural University, 2022.
    [65]
    MIESZCZAKOWSKA-FRĄC M, CELEJEWSKA K, PŁOCHARSKI W. Impact of innovative technologies on the content of vitamin C and its bioavailability from processed fruit and vegetable products[J]. Antioxidants (Basel),2021,10(1):54. doi: 10.3390/antiox10010054
    [66]
    李树锦, 高美须, 刘超超, 等. 辐照对鲜切蔬菜维生素C及亚硝酸盐的影响[J]. 中国食品学报,2015,15(9):224−230. [LI S J, GAO M X, LIU C C, et al. Effects of irradiation on vitamin C and nitrite in fresh-cut vegetables[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(9):224−230.]

    LI S J, GAO M X, LIU C C, et al. Effects of irradiation on vitamin C and nitrite in fresh-cut vegetables[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(9): 224−230.
    [67]
    VIACAVA F, RAMOS-PARRA P A, WELTI-CHANES J, et al. High hydrostatic pressure processing of whole carrots:Effect of static and multi-pulsed mild intensity hydrostatic pressure treatments on bioactive compounds[J]. Foods,2021,10(2):219. doi: 10.3390/foods10020219
    [68]
    NIEDŹWIEDŹ I, SIMEONOV V, WAŚKO A, et al. Comparison of the effect of cold plasma with conventional preservation methods on red wine quality using chemometrics analysis[J]. Molecules,2022,27(20):7048. doi: 10.3390/molecules27207048
    [69]
    YUAN L, LAO F, SHI X, et al. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices[J]. Ultrasonics Sonochemistry,2022,90:106219. doi: 10.1016/j.ultsonch.2022.106219
    [70]
    黄玉立, 赵楠, 黄庆, 等. 发酵蔬菜风味物质形成机制及影响因素研究进展[J]. 食品与发酵工业,2021,47(24):279−285. [HUANG Y L, ZHAO N, HUANG Q, et al. Research progress on the formation mechanism and influencing factors of fermented vegetable flavor substances[J]. Food and Fermentation Industries,2021,47(24):279−285.]

    HUANG Y L, ZHAO N, HUANG Q, et al. Research progress on the formation mechanism and influencing factors of fermented vegetable flavor substances[J]. Food and Fermentation Industries, 2021, 47(24): 279−285.
    [71]
    杜喜玲. 超高压处理对泡菜风味的影响[J]. 食品安全导刊,2017(24):99. [DU X L. Effect of ultra-high pressure treatment on flavor of kimchi[J]. China Food Safety Magazine,2017(24):99.] doi: 10.3969/j.issn.1674-0270.2017.24.096

    DU X L. Effect of ultra-high pressure treatment on flavor of kimchi[J]. China Food Safety Magazine, 2017(24): 99. doi: 10.3969/j.issn.1674-0270.2017.24.096
    [72]
    YUAN L, XU F, XU Y, et al. Production of marinated chinese lotus root slices using high-pressure processing as an alternative to traditional thermal-and-soaking procedure[J]. Molecules,2022,27(19):6506. doi: 10.3390/molecules27196506
    [73]
    高苏敏, 吴丹璇, 高子武, 等. 超声波协同低盐处理对萝卜泡菜水菌群分布和特征风味的影响[J]. 食品与发酵工业, 2022, 48(15):154-163. [GAO S M, WU D X, GAO Z W, et al. Effects of ultrasonic combined with low salt treatment on the distribution of water bacteria and characteristic flavor of radish pickles [J]. Food and Fermentation Industries 2022, 48(15):154-163.]

    GAO S M, WU D X, GAO Z W, et al. Effects of ultrasonic combined with low salt treatment on the distribution of water bacteria and characteristic flavor of radish pickles [J]. Food and Fermentation Industries 2022, 48(15): 154-163.
    [74]
    杨姗, 王卫, 赵楠, 等. 发酵蔬菜色泽形成机制及影响因素研究进展[J]. 食品科学,2022,43(23):269−276. [YANG S, WANG W, ZHAO N, et al. Research progress on color formation mechanism and influencing factors of fermented vegetables[J]. Food Science,2022,43(23):269−276.] doi: 10.7506/spkx1002-6630-20220121-216

    YANG S, WANG W, ZHAO N, et al. Research progress on color formation mechanism and influencing factors of fermented vegetables[J]. Food Science, 2022, 43(23): 269−276. doi: 10.7506/spkx1002-6630-20220121-216
    [75]
    MARSZAŁEK K, WOŹNIAK Ł, KRUSZEWSKI B, et al. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables[J]. International Journal of Molecular Sciences,2017,18(2):277. doi: 10.3390/ijms18020277
    [76]
    MA Y, XU Y, CHEN Y, et al. Effect of different sterilization methods on the microbial and physicochemical changes in prunus mume juice during storage[J]. Molecules,2022,27(4):1197. doi: 10.3390/molecules27041197
    [77]
    刘莹萍, 崔莉, 牛丽影, 等. 微波对植物乳杆菌的杀灭作用及其在莴苣泡菜中的应用[J]. 食品工业科技,2016,37(24):245−248. [LIU Y P, CUI L, NIU L Y, et al. The killing effect of microwave on Lactobacillus plantarum and its application in lettuce pickle[J]. Science and Technology of Food Industry,2016,37(24):245−248.]

    LIU Y P, CUI L, NIU L Y, et al. The killing effect of microwave on Lactobacillus plantarum and its application in lettuce pickle[J]. Science and Technology of Food Industry, 2016, 37(24): 245−248.
    [78]
    赵楠, 葛黎红, 张恺熹, 等. 微热辅助低温等离子体杀菌技术对榨菜贮藏期品质劣变的影响[J]. 中国酿造,2023,42(2):151−156. [ZHAO N, GE L H, ZHANG K X, et al. Effect of mild heating-assisted cold plasma sterilization on quality deterioration of zhacai during storage[J]. China Brewing,2023,42(2):151−156.]

    ZHAO N, GE L H, ZHANG K X, et al. Effect of mild heating-assisted cold plasma sterilization on quality deterioration of zhacai during storage[J]. China Brewing, 2023, 42(2): 151−156.
    [79]
    李昌宝, 辛明, 孙宇, 等. 杀菌方式对低盐腌渍黄瓜的品质影响[J]. 食品工业科技,2020,41(12):14−20. [LI C B, XIN M, SUN Y, et al. Effect of sterilization method on the quality of pickled cucumber with low salt[J]. Science and Technology of Food Industry,2020,41(12):14−20.]

    LI C B, XIN M, SUN Y, et al. Effect of sterilization method on the quality of pickled cucumber with low salt[J]. Science and Technology of Food Industry, 2020, 41(12): 14−20.
    [80]
    王媛. 非热等离子体作用下的泡菜亚硝酸盐生成及降解的微生物调控[D]. 镇江:江苏大学, 2022. [WANG Y. Microbial regulation of nitrite production and degradation in kimchi under non-thermal plasma[J]. Zhenjiang:Jiangsu University, 2022.]

    WANG Y. Microbial regulation of nitrite production and degradation in kimchi under non-thermal plasma[J]. Zhenjiang: Jiangsu University, 2022.
    [81]
    NIEDŹWIEDŹ I, PŁOTKA-WASYLKA J, KAPUSTA I, et al. The impact of cold plasma on the phenolic composition and biogenic amine content of red wine[J]. Food Chemistry,2022,381:132257. doi: 10.1016/j.foodchem.2022.132257
  • Related Articles

    [1]GU Dandan, DONG Xue, ZHANG Jinxiu, WANG Xiaoru, ZHAO Zongshuo, WANG Li'an. Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 237-245. DOI: 10.13386/j.issn1002-0306.2024090266
    [2]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [3]LI Yajun, YI Que, YANG Junheng, DENG Xiaomei, LIANG Zhonghou. Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(13): 179-183. DOI: 10.13386/j.issn1002-0306.2020090267
    [4]SHIAU Syyu, LI Ying, PAN Weicheng. Physico-chemical and Antioxidant Properties of Noodle Enriched with Beetroot Puree[J]. Science and Technology of Food Industry, 2021, 42(13): 33-38. DOI: 10.13386/j.issn1002-0306.2020070353
    [5]Yuedong SONG, Xiaoqing CHEN, Yumin ZHANG, Yanfang ZHANG, Zhiyi WANG, Fei WANG. Optimization of Extraction Process of Flavonoids from Fagopyrum esculentum Moench Leaves and Its Antioxidant Properties[J]. Science and Technology of Food Industry, 2021, 42(7): 180-187. DOI: 10.13386/j.issn1002-0306.2020060122
    [6]YAO Hong-ling, LU Qu, HAN Ran, NAI Yi-fan, JIA Tian-hui. The preparation process optimization and antioxidant properties in vitro of hydrolysates from pigeon meat[J]. Science and Technology of Food Industry, 2018, 39(4): 64-67,87.
    [7]LI Bo-hang, SHEN He-ding, ZHU Min, ZHAO Yong-can. Study on process optimization and antioxidant activity of bioactive peptides from Onchidium struma[J]. Science and Technology of Food Industry, 2017, (17): 168-173. DOI: 10.13386/j.issn1002-0306.2017.17.032
    [8]Study on antioxidation properties of hydrolysates from the scallop skirt in vivo and in vitro[J]. Science and Technology of Food Industry, 2013, (08): 290-294. DOI: 10.13386/j.issn1002-0306.2013.08.009
    [9]茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 张敏杰,杨武德,代叶,李玮,魏晴,梁珊珊. 黔产不同商品规格金钗石斛质量评价研究. 亚太传统医药. 2024(04): 39-43 .
    2. 林鑫静,张明,李鑫,周春阳,蒲跃,袁斌,范艺缤,范润勇,夏天琴,尤俊,杨晓曦,胥正敏. 调脏舒秘合剂小鼠急性毒性实验研究. 现代中医药. 2023(02): 91-95 .
    3. 杨吉容,石京山. 金钗石斛破壁粉对自发性高血压大鼠血压及心功能的影响. 遵义医科大学学报. 2022(06): 699-705 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (161) PDF downloads (30) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return