SHI Yumeng, LIANG Fuqiang, GUO Ruilin, et al. Structural Characteristics of Rice Bran Insoluble Dietary Fiber Bound Phenolic and Its Effect on Gut Microbiota[J]. Science and Technology of Food Industry, 2023, 44(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120059.
Citation: SHI Yumeng, LIANG Fuqiang, GUO Ruilin, et al. Structural Characteristics of Rice Bran Insoluble Dietary Fiber Bound Phenolic and Its Effect on Gut Microbiota[J]. Science and Technology of Food Industry, 2023, 44(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120059.

Structural Characteristics of Rice Bran Insoluble Dietary Fiber Bound Phenolic and Its Effect on Gut Microbiota

More Information
  • Received Date: December 06, 2022
  • Available Online: March 16, 2023
  • Rice bran is a major source of phenolic substances in cereals, in which phenolics mainly bound with dietary fiber in the form of conjugated state. In this study, rice bran insoluble dietary fiber-bound phenolic (IDF-BP) was prepared by sequential enzymatic method. The structure of IDF-BP was characterized by confocal laser scanning microscope (CLSM), Fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM) and X-ray diffraction. The IDF-BP was subjected to simulated gastrointestinal digestion and colon fermentation in vitro, followed by 16S rRNA high-throughput sequencing of short-chain fatty acids. The results showed that the yield of rice bran IDF-BP was 23.73%±0.008%, the content of BP was 6.11±0.085 mg GAE/g DW, and the content of ferulic acid was the highest (1.41±0.013 mg/g DW). The IDF-BP was a typical cellulose crystal form of cellulose, which had both cellulose and hemicellulose characteristic groups and ester bond characteristic peaks, indicating that bound phenolic were bound to dietary fiber in the form of ester bond. The results of intestinal flora diversity and flora abundance showed that IDF-BP could regulate the balance of intestinal flora by reducing the diversity of intestinal flora, down-regulating intestinal harmful bacteria such as Bacteroides and Phascolarctobacterium, and increase intestinal beneficial bacteria such as Bifidobacterium and Akkermansia to achieve the goal of regulating the balance of gut microbiota. Additionally, it also had the ability to boost the production of short chain fatty acids (mainly acetic acid, propionic acid and butyric acid) to adjust intestinal pH. Rice bran IDF-BP had both the characteristics of dietary fiber and phenolics, and the two had a good synergistic effect on intestinal flora and short chain fatty acids, which would indicate that rice bran IDF-BP has the potential to improve the intestinal environment, thus achieving health benefits.
  • [1]
    陈甜妹. 米糠固态发酵工艺优化及其对米糠营养功能特性的影响[D]. 佛山: 佛山科学技术学院, 2020

    CHEN T M. Technology optimization for rice bran solid state fermentation and its effects on the nutritional and functional properties of rice bran[D]. Foshan: Foshan University, 2020.
    [2]
    BUTSAT S, SIRIAMORNPUN S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice[J]. Food Chemistry,2010,119(2):606−613. doi: 10.1016/j.foodchem.2009.07.001
    [3]
    DE MIRA N V M, MASSARETTO I L, PASCUAL C S C I, et al. Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes[J]. Journal of Food Composition and Analysis,2009,22(5):405−409. doi: 10.1016/j.jfca.2008.06.012
    [4]
    ACOSTA-ESTRADA B A, GUTIÉRREZ-URIBE J A, SERNA-SALDÍVAR S O. Bound phenolics in foods, a review[J]. Food Chemistry,2014,152:46−55. doi: 10.1016/j.foodchem.2013.11.093
    [5]
    ZHANG X, ZHANG M, DONG L, et al. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation[J]. Journal of Agricultural and Food Chemistry,2019,67(46):12796−12805. doi: 10.1021/acs.jafc.9b06477
    [6]
    PALAFOX-CARLOS H, AYALA-ZAVALA J F, GONZÁLEZ-AGUILAR G A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants[J]. Journal of Food Science,2011,76(1):R6−R15. doi: 10.1111/j.1750-3841.2010.01957.x
    [7]
    武锦春. 正常人肠道菌群对酸枣仁总黄酮的体外代谢研究[D]. 太原: 山西大学, 2021

    WU J C. Study on the in vitro metabolism of total flavonoids in Ziziphi Spinosae Semen by normal human intestinal flora[D]. Taiyuan: Shanxi University, 2021.
    [8]
    DONG R, YU Q, LIAO W, et al. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity[J]. Food Chemistry,2021,339:127879. doi: 10.1016/j.foodchem.2020.127879
    [9]
    李文婷. 六种豆类中不同结合态多酚组成、胃肠道生物可接受率及其抗氧化活性研究[D]. 南昌: 南昌大学, 2018

    LI W T. The composition of free, conjugated and bound phenolics in six legumes, and their bioacessibility of gastrointestinal tract and antioxidant activity[D]. Nanchang: Nanchang University, 2018.
    [10]
    徐灼辉. 荔枝干果肉膳食纤维—结合酚加合物结构表征及其润肠通便作用机制[D]. 广州: 广州大学, 2020

    XU Z H. Structural characterization of dietary fiber-bound phenolic adducts in dried lychee pulp and its mechanism of moistening intestine and laxative effect[D]. Guangzhou: Guangzhou University, 2020.
    [11]
    LI Y, LI M, WANG L, et al. Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion[J]. Food Chemistry,2022,367:130751. doi: 10.1016/j.foodchem.2021.130751
    [12]
    任明非. 米糠不溶性膳食纤维与Cd2+结合特性的研究[D]. 无锡: 江南大学, 2020

    REN M F. Study on the binding characteristics of rice bran insoluble dietary fiber with Cd2+[D]. Wuxi: Jiangnan University, 2020.
    [13]
    王洪欣. 铜藻膳食纤维的提取、性质及可食用膜的制备[D]. 杭州: 浙江工商大学, 2020

    WANG H X. Extraction, properties and preparation of edible film of dietary fiber from Sargassum horneri[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [14]
    MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2014,5(6):1113−1124.
    [15]
    顿倩. 黑豆膳食纤维结合的多酚构成和微生物代谢规律的研究[D]. 南昌: 南昌大学, 2019

    DUN Q. Study on composition and microbial metabolism of bound phenolics binding to dietary fiber of black bean[D]. Nanchang: Nanchang University, 2019.
    [16]
    程玉鑫. 干酪乳杆菌发酵蓝莓果渣对高脂膳食小鼠肠道屏障功能的调节作用及机制[D]. 武汉: 华中农业大学, 2020

    CHENG Y X. Lactobacillus casei fermented blueberry pomace regulates the intestinal barrier function of high fat diet mice and the underlying mechanisms[D]. Wuhan: Huazhong Agricultural University, 2020.
    [17]
    赵珊, 仲伶俐, 周虹, 等. 超高效液相色谱-串联质谱法鉴定和分析稻米中酚酸类化合物的组成及分布[J]. 中国农业科学,2020,53(3):612−631. [ZHAO S, ZHONG L L, ZHOU H, et al. Identification and analysis of phenolic acids in rice using ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Scientia Agricultura Sinica,2020,53(3):612−631.
    [18]
    XU Z, XIONG X, ZENG Q, et al. Alterations in structural and functional properties of insoluble dietary fibers-bound phenolic complexes derived from lychee pulp by alkaline hydrolysis treatment[J]. LWT,2020,127:109335. doi: 10.1016/j.lwt.2020.109335
    [19]
    刘帅. 基于微生物发酵研究胡萝卜膳食纤维与结合多酚之间酵解特性的相互影响[D]. 南昌: 南昌大学, 2020

    LIU S. Study on the interaction between carrot dietary fibers and bound polyphenols based on microbial fermentation[D]. Nanchang: Nanchang University, 2020.
    [20]
    黄冬云. 米糠膳食纤维的酶法改性及功能性质研究[D]. 无锡: 江南大学, 2014

    HUANG D Y. Enzymatic modification and functional properties of rice bran dietary fiber[D]. Wuxi: Jiangnan University, 2014.
    [21]
    郭天时. 米糖膳食纤维的微粉—酶法改性及其理化功能性质的变化研究[D]. 哈尔滨: 哈尔滨商业大学, 2017

    GUO T S. Micronized-enzymatic modification of rice bran dietary fiber and changes of its physicochemical and functional properties[D]. Harbin: Harbin University of Commerce, 2017.
    [22]
    祁静. 高吸附性米糠纤维的制备及其吸附特性的研究[D]. 无锡: 江南大学, 2016

    QI J. The research on the preparation and adsorption properties of rice bran fiber with high adsorption capacities[D]. Wuxi: Jiangnan University, 2016.
    [23]
    曹龙奎, 康丽君, 寇芳, 等. 改性前后小米糠膳食纤维结构分析及体外抑制α-葡萄糖苷酶活性[J]. 食品科学,2018,39(11):46−52. [CAO L K, KANG L J, KOU F, et al. Structural analysis and in vitro inhibitory effect on α-glucosidase activity of millet bran dietary fiber before and after modification[J]. Food Science,2018,39(11):46−52. doi: 10.7506/spkx1002-6630-201811008
    [24]
    HUANG H, CHEN J, HU X, et al. Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber[J]. Food & Function,2022,13(5):2710−2728.
    [25]
    刘倩, 范誉川, 刘素诗, 等. 米糠粕不溶性膳食纤维理化性质及对高脂大鼠肠道菌群的影响[J]. 食品科学,2021,42(15):174−179. [LIU Q, FAN Y C, LIU S S, et al. Physicochemical properties of insoluble dietary fiber from defatted rice bran and its effect on intestinal microbiota of high-fat diet fed rats[J]. Food Science,2021,42(15):174−179. doi: 10.7506/spkx1002-6630-20200730-395
    [26]
    LIU S, YU Q, HUANG H, et al. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro[J]. Food & Function,2020,11(1):748−758.
    [27]
    董瑞红. 胡萝卜膳食纤维中结合多酚的体外消化酵解规律和营养功能特性及其在酸奶中的应用[D]. 南昌: 南昌大学, 2021

    DONG R H. The release and nutritional functional properties of bound polyphenols from carrot dietary fiber during in vitro digestion and colonic fermentation and its application in yogurt[D]. Nanchang: Nanchang University, 2021.
    [28]
    RASTMANESH R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction[J]. Chemico-Biological Interactions,2011,189(1−2):1−8. doi: 10.1016/j.cbi.2010.10.002
    [29]
    AURA A M. Microbial metabolism of dietary phenolic compounds in the colon[J]. Phytochemistry Reviews,2008,7(3):407−429. doi: 10.1007/s11101-008-9095-3
    [30]
    韩飞, 韩阳阳, 赵建新, 等. 4种杂粮对大鼠肠道菌群组成及短链脂肪酸的影响[J]. 食品科学,2022,43(13):101−108. [HAN F, HANY Y, ZHAO J X, et al. Effects of four cereals on composition of gut microbiota and short-chain fatty acids in rats[J]. Food Science,2022,43(13):101−108. doi: 10.7506/spkx1002-6630-20210430-422
    [31]
    张文易. 绣球菌多糖结构表征及其对阿尔茨海默症小鼠的干预作用[D]. 无锡: 江南大学, 2022

    ZHANG W Y. Structural characterization and the intervention of Sparassis crispa polysaccharides on the Alzheimer's disease mice[D]. Wuxi: Jiangnan University, 2022.
    [32]
    DONG R, LIU S, XIE J, et al. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation[J]. Food Research International,2021,143:110263. doi: 10.1016/j.foodres.2021.110263
    [33]
    谢甜, 孙琳, 范伟, 等. 番石榴结合态多酚对小鼠肠道菌群结构及多样性的影响研究[J]. 核农学报,2021,35(11):2589−2597. [XIE T, SUN L, FAN W, et al. Effects of bound polyphenols in psidium guajava on mice intestinal flora structure and diversity[J]. Journal of Nuclear Agriclutural Sciences,2021,35(11):2589−2597. doi: 10.11869/j.issn.100-8551.2021.11.2589
    [34]
    单琴. 油茶籽粕多糖的降血脂功效及其对肠道菌群的影响[D]. 合肥: 合肥工业大学, 2021

    SHAN Q. The hypolipidemic effect of Camellia seed meal polysaccharide and its influence on intestinal flora[D]. Hefei: Hefei University of Technology, 2021.
    [35]
    罗珍. 核桃壳多糖的分离鉴定及消化代谢特性研究[D]. 秦皇岛: 燕山大学, 2021

    LUO Z. Isolation and identification of poly saccharide from juglans regial and its digestion and metabolism characteristics[D]. Qinhuangdao: Yanshan University, 2021.
    [36]
    ZHENG S, ZHANG H, LIU R, et al. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?–New insights from a TNF-α-induced Caco-2 cell model[J]. Food Research International,2021,139:109833. doi: 10.1016/j.foodres.2020.109833
    [37]
    张瑞麟. 英国红芸豆多糖提取、结构鉴定及对T2DM小鼠改善作用研究[D]. 大庆: 黑龙江八一农垦大学, 2022

    ZHANG R L. Study on extraction, structure identification and improvement effect of British red kidney bean polysaccharides on T2DM mice[D]. Daqing: Heilongjiang Bayi Agricultural University, 2022.
    [38]
    鲁朝凤, 黄佳琦, 黄勇桦, 等. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业,2021,47(8):6−13. [LU C F, HUANG J Q, HUANG Y H, et al. Synergetic regulation of gut microbiota by dietary fiber and phenolic compounds in hulless barley[J]. Food and Fermentation Industries,2021,47(8):6−13.
  • Related Articles

    [1]REN Yimeng, GAO Yuan, KONG Shuhua, ZHAO Jinwen, REN Dandan, MA Yichao, LIU Shu, HE Yunhai, WANG Qiukuan. Research Progress on Extraction, Separation and Purification Methods, Structural Characterization and Biological Activity of Natural Polysaccharide-polyphenol Conjugates[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060022
    [2]SHAN Rong, XU Xiaoyi, YIN Yongkui, GAO Xiaoyan, ZHAO Qingxue, SONG Gaochen. Research Progress in the Preparation and Biological Activity of Polysaccharide Nano-selenium[J]. Science and Technology of Food Industry, 2024, 45(18): 376-383. DOI: 10.13386/j.issn1002-0306.2023100109
    [3]YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217
    [4]WEI Bingqi, GAO Xiaoyu, LIU Yanxin, WANG Yicui. Research Progress on Structure, Biological Activity and Product Development of Ziziphus jujuba Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(12): 1-9. DOI: 10.13386/j.issn1002-0306.2023080051
    [5]DAI Shuang, LI Linlin, YIN Wei, WANG Le, WANG Yuwei, LIANG Jian. Research Progress on Extraction, Structure Determination, Chemical Modification and Biological Activity of Garlic Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(1): 9-17. DOI: 10.13386/j.issn1002-0306.2023060161
    [6]YANG Yi, ZHAO Yuan, SUN Jilu, SHAO Juanjuan. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468-479. DOI: 10.13386/j.issn1002-0306.2022070383
    [7]HUANG Min, MIAO Jingnan, WANG Yong, QIU Junqiang, LI Haixia. Research Progress on Extraction, Chemical Structure and Biological Activities of Oudemansiella Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(11): 434-439. DOI: 10.13386/j.issn1002-0306.2021070107
    [8]ZHU Rongjing, CHEN Xuefeng, LIU Huan, MENG Guangyan, DANG Yue. Research Progress on Extraction, Purification and Biological Activities of Nostoc flagelliforme Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(22): 423-432. DOI: 10.13386/j.issn1002-0306.2020090199
    [9]Yongshuai JING, Yuwei ZHANG, Jiaying LI, Xinru YUAN, Yuguang ZHENG, Lanfang WU, Danshen ZHANG. Research Progress of Synthesis Methods, Structural Characteristics and Biological Activities of Selenium Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(7): 374-381. DOI: 10.13386/j.issn1002-0306.2020050188
    [10]ZHANG Jin-yu, WANG Feng, SU Xiao-jun, LI Qing-ming, GUO Shi-yin, GUO Hong-ying, DENG Chao-yang, SHI Zhu, TANG Lan-fang. Research Progress on Structure,Biological Activity and Physicochemical Properties of Yam Polysaccharides[J]. Science and Technology of Food Industry, 2019, 40(12): 364-368. DOI: 10.13386/j.issn1002-0306.2019.12.059
  • Cited by

    Periodical cited type(20)

    1. 陆源添,刘迪. 杨树桑黄与紫孢侧耳共培养胞内多糖提取工艺优化及抗氧化活性分析. 食品工业科技. 2025(02): 208-217 . 本站查看
    2. 李明櫆,王梦娜,李占峰,彭帮柱. 基于加热回流法的香菇多糖提取工艺优化及其产品研发. 食品科技. 2024(03): 210-216 .
    3. 闫帅. 玫瑰多糖的提取纯化、结构表征、生物活性及应用研究进展. 食品与机械. 2024(10): 236-242 .
    4. 李臣亮,蔡雪莹,杨安慧. 黑虎掌菌的化学成分及其药理作用研究进展. 生物技术通报. 2024(11): 24-33 .
    5. 王晓岩,李刚,孔凡丽. 多脂鳞伞多糖对H22荷瘤小鼠抗肿瘤作用. 食用菌学报. 2023(01): 45-52 .
    6. 戴玉成. 中国多孔菌驯化栽培研究进展. 菌物研究. 2023(Z1): 151-156 .
    7. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化. 湖南农业科学. 2023(02): 1-6 .
    8. 张璐,李翘楚,王增利,丁强,王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化. 浙江农业学报. 2023(05): 1154-1160 .
    9. 桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
    10. 郑伊琦,张安强,张小军,梅光明,何鹏飞. 响应面优化猪苓菌核多糖超声辅助提取工艺及抗氧化活性分析. 食品工业科技. 2023(16): 255-263 . 本站查看
    11. 杨敏,奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究. 湖北农业科学. 2023(08): 160-166 .
    12. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化(英文). Agricultural Science & Technology. 2023(03): 54-62 .
    13. 宋鹏炜,孙畅,丁强,王鸿磊. 裂褶菌高产胞外多糖发酵培养基优化及生物活性研究. 饲料研究. 2023(22): 86-91 .
    14. 李静,李雪婷,刘人鸣,王羽,朴京培,郭海勇. 榆耳主要活性成分及其生物学功能研究进展. 食品研究与开发. 2023(24): 193-200 .
    15. 秦瑞博,成玉飞,陈嫒,文明佳,何嘉,杜昕. 表面活性剂辅助酶法提取茶树菇多糖工艺研究. 生物化工. 2023(06): 80-84+101 .
    16. 杨彤,孙静,郝宸,王建瑞,刘宇. 盐胁迫下六妹羊肚菌菌丝体的理化性状. 食品与发酵工业. 2022(18): 162-167 .
    17. 冯小飞,朗丹,寸孟人,胡珊苑,余浪,杨斌. 2株野生木耳液体培养方法优化及其胞内多糖的抗氧化活性分析. 西南林业大学学报(自然科学). 2022(05): 96-103 .
    18. 莫翠园,盛丽,刘若凡,郝梅,马爱民. 虎奶菇多糖提取工艺优化、结构鉴定及抗氧化活性研究. 食品科技. 2022(09): 156-163 .
    19. 李兴恺,张耀根,姚皓昱,丁一飞,王诗雨,王燕玲,孙涛,雷鹏,徐虹,王瑞. 毛韧革菌胞外多糖的结构表征、抗氧化活性研究及发酵条件优化. 食品与发酵工业. 2022(21): 36-41 .
    20. 梅承翰,张丽英,张冰梅,陈蓓蓓. 红托竹荪多糖组分和生物活性研究进展. 中国食用菌. 2022(11): 8-11+17 .

    Other cited types(20)

Catalog

    Article Metrics

    Article views (422) PDF downloads (61) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return