YANG Yi, ZHAO Yuan, SUN Jilu, et al. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468−479. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070383.
Citation: YANG Yi, ZHAO Yuan, SUN Jilu, et al. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468−479. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070383.

Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity

More Information
  • Received Date: August 02, 2022
  • Available Online: April 17, 2023
  • Polysaccharides are biological macromolecules and their biological activities depend on their structure and physicochemical properties. Studies have shown that chemical modification of polysaccharides can significantly increase their structural diversity, improve their biological activities, and even add new biological activities. This article reviews systematacially the research progress of chemical modification of polysaccharides in recent years, including frequently-used methods of chemical modification, the influence of various chemical modification on molecular weight of polysaccharides, physical and chemical properties and spatial structure, the biological activity of chemically modified polysaccharides as well as their pharmaceutical and food industrial application prospect and challenges. It is expected to offer a reference for the further research chemically modified polysaccharides and provide an important basis for the future development of food and medicine based on human health.
  • [1]
    ZHAO Y, YAN B, WANG Z, et al. Natural polysaccharides with immunomodulatory activities[J]. Mini Reviews in Medicinal Chemistry,2020,20(2):96−106. doi: 10.2174/1389557519666190913151632
    [2]
    WANG X, ZHANG S, SHANG H, et al. Evaluation of the antiviral effect of four plant polysaccharides against duck circovirus[J]. Research in Veterinary Science, 2022, 152: 446-457.
    [3]
    ZHANG H, CUI S, LV H, et al. A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example[J]. Carbohydrate Polymers,2019,215:130−136. doi: 10.1016/j.carbpol.2019.03.075
    [4]
    WANG K W, YANG C, YAN S N, et al. Dendrobium hancockii polysaccharides, structure characterization, modification, antioxidant and antibacterial activity[J]. Industrial Crops and Products,2022,188:115565. doi: 10.1016/j.indcrop.2022.115565
    [5]
    XU Y, WU Y, SUN P, et al. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action[J]. International Journal of Biological Macromolecules,2019,132:970−977. doi: 10.1016/j.ijbiomac.2019.03.213
    [6]
    LI S, XIONG Q, LAI X, et al. Molecular modification of polysaccharides and resulting bioactivities[J]. Comprehensive Reviews in Food Science and Food Safety,2016,15(2):237−250. doi: 10.1111/1541-4337.12161
    [7]
    LI S, SHAH N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J]. Food Chemistry,2014,165:262−270. doi: 10.1016/j.foodchem.2014.05.110
    [8]
    LIU Y, TANG Q, DUAN X, et al. Antioxidant and anticoagulant activities of mycelia polysaccharides from Catathelasma ventricosum after sulfated modification[J]. Industrial Crops and Products,2018,112:53−60. doi: 10.1016/j.indcrop.2017.10.064
    [9]
    AHMAD M M. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100045. doi: 10.1016/j.carpta.2021.100045
    [10]
    BEDINI E, LAEZZA A, PARRILLI M, et al. A review of chemical methods for the selective sulfation and desulfation of polysaccharides[J]. Carbohydrate Polymers,2017,174:1224−1239. doi: 10.1016/j.carbpol.2017.07.017
    [11]
    YU Y, SONG Q, HUANG L, et al. Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes[J]. Journal of Functional Foods,2020,64:103706. doi: 10.1016/j.jff.2019.103706
    [12]
    HAN Y, OUYANG K, LI J, et al. Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells[J]. International Journal of Biological Macromolecules,2020,159:108−116. doi: 10.1016/j.ijbiomac.2020.04.265
    [13]
    周艳, 林中瑞, 张聪, 等. 响应面法优化猴头菌硫酸化多糖[J]. 生物技术,2019,29(5):492−497. [ZHOU Y, LIN Z R, ZHANG C, et al. Optimization of the sulfated polysaccharide of Hericium erinaceus by response surface methodology[J]. Biotechnology,2019,29(5):492−497. doi: 10.16519/j.cnki.1004-311x.2019.05.0081
    [14]
    ZHU Z Y, LIU Y, SI C L, et al. Sulfated modification of the polysaccharide from Cordyceps_gunnii mycelia and its biological activities[J]. Carbohydrate Polymers,2013,92(1):872−876. doi: 10.1016/j.carbpol.2012.10.007
    [15]
    JIANG J, MENG F Y, HE Z, et al. Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro[J]. International Journal of Biological Macromolecules,2014,67:323−329. doi: 10.1016/j.ijbiomac.2014.03.030
    [16]
    SUN Y, SUN W, GUO J, et al. Sulphation pattern analysis of chemically sulphated polysaccharide LbGp1 from Lycium barbarum by GC-MS[J]. Food Chemistry,2015,170:22−29. doi: 10.1016/j.foodchem.2014.08.024
    [17]
    CHEN X W, HUANG W B, SUN X Y, et al. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth[J]. Materials Science and Engineering:C,2021,128:112338. doi: 10.1016/j.msec.2021.112338
    [18]
    KATRITZKY A R, RAMSDEN C A, SCRIVEN E F V, et al. Comprehensive heterocyclic chemistry III[M]. Amsterdam: Elsevier, 2008.
    [19]
    XIE L, SHEN M, WANG Z, et al. Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review[J]. Trends in Food Science & Technology,2021,118:539−557.
    [20]
    LIU W, HU C, LIU Y, et al. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai[J]. International Journal of Biological Macromolecules,2017,99:454−464. doi: 10.1016/j.ijbiomac.2017.02.065
    [21]
    赵迪. 黑木耳多糖对炎性肠病的预防作用及其化学修饰[D]. 上海: 华东理工大学, 2021

    ZHAO D. The preventive effect of Auricularia auricular-judae (Bull.) polysaccharide against IBD and its modification[D]. Shanghai: East China University of Science and Technology, 2021.
    [22]
    沈玉彬, 郝二伟, 杜正彩, 等. 龙眼多糖化学结构、构效关系与药理活性研究进展[J]. 中草药,2022,53(23):7624−7632. [SHEN Y B, HAO E W, DU Z C, et al. Research progress on chemical structure, structure-activity relationship and pharmacological activity of Dimocarpus longan polysaccharides[J]. Chinese Traditional and Herbal Drugs,2022,53(23):7624−7632.
    [23]
    LI J, SHANG W, SI X, et al. Carboxymethylation of corn bran polysaccharide and its bioactive property[J]. International Journal of Food Science & Technology,2017,52(5):1176−1184.
    [24]
    FAN L, WANG L, GAO S, et al. Synthesis, characterization and properties of carboxymethyl kappa carrageenan[J]. Carbohydrate Polymers,2011,86(3):1167−1174. doi: 10.1016/j.carbpol.2011.06.010
    [25]
    WANG Z J, XIE J H, SHEN M Y, et al. Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation[J]. Carbohydrate Polymers,2016,136:988−994. doi: 10.1016/j.carbpol.2015.10.017
    [26]
    YANG W, HUANG G, HUANG H. Preparation and structure of polysaccharide selenide[J]. Industrial Crops and Products,2020,154:112630. doi: 10.1016/j.indcrop.2020.112630
    [27]
    NAVARRO-ALARCON M, CABRERA-VIQUE C. Selenium in food and the human body: A review[J]. Science of the Total Environment,2008,400(1-3):115−141. doi: 10.1016/j.scitotenv.2008.06.024
    [28]
    GAO Z, CHEN J, QIU S, et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity[J]. Carbohydrate Polymers,2016,136:560−569. doi: 10.1016/j.carbpol.2015.09.065
    [29]
    PANG X F, YANG G N, ZHAO Q. Preparation of selenide glyeyrrhiza polysaccharides[J]. Chem Eng,2009,37:63−66.
    [30]
    REN G, LI K, HU Y, et al. Optimization of selenizing conditions for Seleno-Lentinan and its characteristics[J]. International Journal of Biological Macromolecules,2015,81:249−258. doi: 10.1016/j.ijbiomac.2015.08.012
    [31]
    FENG Y, QIU Y, DUAN Y, et al. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides[J]. Food Research International, 2021: 110913.
    [32]
    ZHU S, HU J, LIU S, et al. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity[J]. Carbohydrate Polymers,2020,246:116545. doi: 10.1016/j.carbpol.2020.116545
    [33]
    CHEN F, HUANG G, HUANG H. Preparation, analysis, antioxidant activities in vivo of phosphorylated polysaccharide from Momordica charantia[J]. Carbohydrate Polymers,2021,252:117179. doi: 10.1016/j.carbpol.2020.117179
    [34]
    WANG J, WANG Y, XU L, et al. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide[J]. Carbohydrate Polymers,2018,181:19−26. doi: 10.1016/j.carbpol.2017.10.049
    [35]
    GHIMICI L, SUFLET D M. Phosphorylated polysaccharide derivatives as efficient separation agents for zinc and ferric oxides particles from water[J]. Separation and Purification Technology,2015,144:31−36. doi: 10.1016/j.seppur.2014.11.031
    [36]
    WANG K, LIU Q. Chemical structure analyses of phosphorylated chitosan[J]. Carbohydrate Research,2014,386:48−56. doi: 10.1016/j.carres.2013.12.021
    [37]
    LI X L, TU X F, THAKUR K, et al. Effects of different chemical modifications on the antioxidant activities of polysaccharides sequentially extracted from peony seed dreg[J]. International Journal of Biological Macromolecules,2018,112:675−685. doi: 10.1016/j.ijbiomac.2018.01.216
    [38]
    于方园, 胡淼, 门雨薇, 等. 桦褐孔菌多糖磷酸化修饰工艺研究[J]. 食品研究与开发,2022,43(12):133−138. [YU F Y, HU M, MEN Y W, et al. Phosphorylation modification process of Inonotus obliquus polysaccharides[J]. Food Research and Development,2022,43(12):133−138. doi: 10.12161/j.issn.1005-6521.2022.12.018
    [39]
    HU S, SONG L, PAN H, et al. Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure[J]. Journal of Analytical and Applied Pyrolysis,2012,97:109−115. doi: 10.1016/j.jaap.2012.06.003
    [40]
    GRIESSER J, BURTSCHER S, KÖLLNER S, et al. Zeta potential changing self-emulsifying drug delivery systems containing phosphorylated polysaccharides[J]. European Journal of Pharmaceutics and Biopharmaceutics,2017,119:264−270. doi: 10.1016/j.ejpb.2017.06.025
    [41]
    YE X, ZHAO Z, WANG W. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1)[J]. International Journal of Biological Macromolecules,2021,171:112−122. doi: 10.1016/j.ijbiomac.2020.12.201
    [42]
    AI C, MENG H, LIN J, et al. Emulsification properties of alkaline soluble polysaccharide from sugar beet pulp: Effect of acetylation and methoxylation[J]. Food Hydrocolloids,2022,124:107361. doi: 10.1016/j.foodhyd.2021.107361
    [43]
    XIE L, SHEN M, HONG Y, et al. Chemical modifications of polysaccharides and their anti-tumor activities[J]. Carbohydrate Polymers,2020,229:115436. doi: 10.1016/j.carbpol.2019.115436
    [44]
    REIS S E, ANDRADE R G C, ACCARDO C M, et al. Influence of sulfated polysaccharides from Ulva lactuca L. upon Xa and IIa coagulation factors and on venous blood clot formation[J]. Algal Research,2020,45:101750. doi: 10.1016/j.algal.2019.101750
    [45]
    Da SILVA CHAGAS F D, LIMA G C, DOS SANTOS V I N, et al. Sulfated polysaccharide from the redalgae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects[J]. International Journal of Biological Macromolecules,2020,159:415−421. doi: 10.1016/j.ijbiomac.2020.05.012
    [46]
    GAO N, CHEN R, MOU R, et al. Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata[J]. International Journal of Biological Macromolecules,2020,164:3421−3428. doi: 10.1016/j.ijbiomac.2020.08.150
    [47]
    LI F, LIN Z, WU Y, et al. Antioxidant, anticoagulant and thrombolytic properties of SIP-IV, a sulfated polysaccharide from Sepia esculenta ink, and its derivatives[J]. Food Bioscience,2022,49:101959. doi: 10.1016/j.fbio.2022.101959
    [48]
    RAHMAN I, BISWAS S K, KODE A. Oxidant and antioxidant balance in the airways and airway diseases[J]. European Journal of Pharmacology,2006,533(1-3):222−239. doi: 10.1016/j.ejphar.2005.12.087
    [49]
    李晓丽. 牡丹籽粕多糖的化学修饰及其抗氧化和抑菌能力的研究[D]. 合肥: 合肥工业大学, 2019

    LI X L. Chemical modifications of polysaccharides extracted from peony seed dreg, and their antioxidant and antibacterial activities in vitro[D]. Hefei: Hefei University of Technology, 2019.
    [50]
    WANG J, BAO A, MENG X, et al. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro[J]. Carbohydrate Polymers,2018,184:366−375. doi: 10.1016/j.carbpol.2017.12.065
    [51]
    HU H, LI H, HAN M, et al. Chemical modification and antioxidant activity of the polysaccharide from Acanthopanax leucorrhizus[J]. Carbohydrate Research,2020,487:107890. doi: 10.1016/j.carres.2019.107890
    [52]
    李容, 钟兆银, 姜艳, 等. 川木瓜多糖的化学修饰及其活性研究[J]. 右江民族医学院学报,2018,40(5):418−422. [LI R, ZHONG Z Y, JIANG Y, et al. Study on the chemical modification and the activity of Chaenomeles speciosa polysaccharide[J]. Journal of Youjiang Medical University for Nationalities,2018,40(5):418−422. doi: 10.3969/j.issn.1001-5817.2018.05.004
    [53]
    张子木, 黄秀芳, 张琴, 等. 壶瓶碎米荠多糖硫酸化结构修饰及抗氧化活性研究[J]. 中国粮油学报,2021,36(12):28−33. [ZHANG Z M, HUANG X F, ZHANG Q, et al. Sulfated structure modification and antioxidant activity of Cardamine hupingshanensis polysaccharide[J]. Journal of the Chinese Cereals and Oils Association,2021,36(12):28−33. doi: 10.3969/j.issn.1003-0174.2021.12.006
    [54]
    许云华, 周旋, 乔友志. 硫酸化辣木多糖的制备及其抗氧化活性研究[J]. 连云港师范高等专科学校学报,2020,37(3):103−108. [XU Y H, ZHOU X, QIAO Y Z. On Preparation and antioxidant activity of sulfated polysaccharide in Moringa oleifera[J]. Journal of Lianyungang Normal College,2020,37(3):103−108. doi: 10.3969/j.issn.1009-7740.2020.03.021
    [55]
    CAO Y Y, JI Y H, LIAO A M, et al. Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activities in-vitro of polysaccharides sequentially extracted from Amana edulis[J]. International Journal of Biological Macromolecules,2020,146:887−896. doi: 10.1016/j.ijbiomac.2019.09.211
    [56]
    金明枝. 大球盖菇多糖的结构表征、化学修饰及生物活性研究[D]. 合肥: 合肥工业大学, 2021

    JIN M Z. Structure characterization, chemical modification and biological activity of polysaccharides from Stropharia rugosoannulata[D]. Hefei: Hefei University of Technology, 2021.
    [57]
    XIE L, SHEN M, WEN P, et al. Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of phosphorylated polysaccharide from Cyclocarya paliurus[J]. Food and Chemical Toxicology,2020,145:111754. doi: 10.1016/j.fct.2020.111754
    [58]
    CHEN L, HUANG G. Antioxidant activities of phosphorylated pumpkin polysaccharide[J]. International Journal of Biological Macromolecules,2019,125:256−261. doi: 10.1016/j.ijbiomac.2018.12.069
    [59]
    LIU Y, HUANG G. The antioxidant activities of carboxymethylated cushaw polysaccharide[J]. International Journal of Biological Macromolecules,2019,121:666−670. doi: 10.1016/j.ijbiomac.2018.10.108
    [60]
    DUAN S, ZHAO M, WU B, et al. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits[J]. International Journal of Biological Macromolecules,2020,155:1114−1122. doi: 10.1016/j.ijbiomac.2019.11.078
    [61]
    白家峰, 姚延超, 郑毅, 等. 罗汉果多糖的羧甲基化修饰及抗氧化性能影响研究[J]. 湖北农业科学,2021,60(15):107−111. [BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences,2021,60(15):107−111. doi: 10.14088/j.cnki.issn0439-8114.2021.15.021
    [62]
    LIU Y, YOU Y, LI Y, et al. Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J]. Journal of Functional Foods,2017,38:355−362. doi: 10.1016/j.jff.2017.09.050
    [63]
    CHEN F, HOU L, ZHU L, et al. Effects of selenide chitosan sulfate on glutathione system in hepatocytes and specific pathogen-free chickens[J]. Poultry Science,2020,99(8):3979−3986. doi: 10.1016/j.psj.2020.04.024
    [64]
    LUO L, WANG Y, ZHANG S, et al. Preparation and characterization of selenium-rich polysaccharide from Phellinus igniarius and its effects on wound healing[J]. Carbohydrate Polymers,2021,264:117982. doi: 10.1016/j.carbpol.2021.117982
    [65]
    ZHU Z Y, LIU F, GAO H, et al. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris[J]. International Journal of Biological Macromolecules,2016,93:1090−1099. doi: 10.1016/j.ijbiomac.2016.09.076
    [66]
    程爽, 贺斐, 付龙洋, 等. 冬凌草硒多糖的制备及其抗氧化活性分析[J]. 精细化工,2021,38(10):2064−2071. [CHENG S, HE F, FU L Y, et al. Preparation of selenium polysaccharide from Rabdosia rubescens and analysis of its antioxidant activity[J]. Fine Chemicals,2021,38(10):2064−2071. doi: 10.13550/j.jxhg.20210320
    [67]
    吕明帅, 赵博, 孙文玉, 等. 富硒黑木耳多糖的理化性质及抗氧化活性研究[J]. 中国调味品,2021,46(6):54−59. [LÜ M S, ZHAO B, SUN W Y, et al. Research on physicochemical properties and antioxidant activity of selenium-enriched Auricularia auricula polysaccharides[J]. China Condiment,2021,46(6):54−59. doi: 10.3969/j.issn.1000-9973.2021.06.010
    [68]
    周连玉, 钟睿, 焦璐, 等. 黄绿蜜环菌硒多糖抗氧化活性及抑菌活性研究[J]. 食品研究与开发,2020,41(15):6−10. [ZHOU L Y, ZHONG R, JIAO L, et al. Antioxidant and antibacterial activities of selenium-containing polysaccharide extracted from Armillaria luteo-virens[J]. Food Research and Development,2020,41(15):6−10. doi: 10.12161/j.issn.1005-6521.2020.15.002
    [69]
    HUANG L, SHEN M, MORRIS G A, et al. Sulfated polysaccharides: Immunomodulation and signaling mechanisms[J]. Trends in Food Science & Technology,2019,92:1−11.
    [70]
    KIM J K, CHO M L, KARNJANAPRATUM S, et al. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera[J]. International Journal of Biological Macromolecules,2011,49(5):1051−1058. doi: 10.1016/j.ijbiomac.2011.08.032
    [71]
    XU L, HE D, ZHANG C, et al. The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease[J]. Journal of Functional Foods,2022,88:104870. doi: 10.1016/j.jff.2021.104870
    [72]
    SHEN M, CHEN X, HUANG L, et al. Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice[J]. Journal of Functional Foods,2021,76:104321. doi: 10.1016/j.jff.2020.104321
    [73]
    YU Y, MO S, SHEN M, et al. Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-κB and PI3K-Akt signaling pathways[J]. Food Research International,2021,150:110756. doi: 10.1016/j.foodres.2021.110756
    [74]
    FENG H, FAN J, LIN L, et al. Immunomodulatory effects of phosphorylated Radix Cyathulae officinalis polysaccharides in immunosuppressed mice[J]. Molecules,2019,24(22):4150. doi: 10.3390/molecules24224150
    [75]
    LIN L, YANG J, YANG Y, et al. Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity[J]. Journal of Carbohydrate Chemistry,2020,39(1):50−62. doi: 10.1080/07328303.2019.1700996
    [76]
    韦毅铭, 何舟, 田海芬, 等. 羧甲基化龙眼肉多糖制备工艺优化及其抗氧化、免疫活性[J]. 食品科学,2017,38(22):275−283. [WEI Y M, HE Z, TIAN H F, et al. Optimization of preparation of carboxymethylated polysaccharides from longan (Dimocarpus longan) pulp by response surface methodology and their antioxidant activity and immunoregulatory activity[J]. Food Science,2017,38(22):275−283. doi: 10.7506/spkx1002-6630-201722041
    [77]
    王警. 乙酰化和羧甲基化龙眼肉多糖的制备及其抗氧化和免疫调节活性的研究[D]. 南宁: 广西医科大学, 2016

    WANG J. Study on the preparation, antioxidant and immunomodulatory activities of acetylated and carboxymethylated polysaccharides from Dimocarpus longan pulp[D]. Nanning: Guangxi Medical University, 2016.
    [78]
    纪迅. 硒化大蒜多糖的制备及其对鸡ND疫苗免疫效果的影响[D]. 扬州: 扬州大学, 2021

    JI X. Preparation of selenium garlic polysaccharide and its effect on chicken ND vaccine[D]. Yangzhou: Yangzhou University, 2021.
    [79]
    王丹阳. 硒化甘草多糖联合抗菌药的抗菌活性及其免疫调节作用研究[D]. 石河子: 石河子大学, 2021

    WANG D Y. Antimicrobial activity of selenzing glycyrrhiza uralensis fisch polysacccharide combined antimicrobial agents and its immunomodulatory effect[D]. Shihezi: Shihezi University, 2021.
    [80]
    王玉涵, 魏溢, 姜胤秀, 等. NaHSO3/NaNO2法修饰海带多糖及抗肿瘤活性研究[J]. 黑龙江医药,2021,34(6):1250−1254. [WANG Y H, WEI Y, JIANG Y X, et al. Study on the modification of Laminaria japonica molysaccharide by NaHSO3/NaNO2 method and its antitumor activity[J]. Heilongjiang Medicine Journal,2021,34(6):1250−1254.
    [81]
    XIE L, HUANG Z, QIN L, et al. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress[J]. International Journal of Biological Macromolecules,2022,204:103−115. doi: 10.1016/j.ijbiomac.2022.01.192
    [82]
    HUANG T Y, HUANG M Y, TSAI C K, et al. Phosphorylation of levan by microwave-assisted synthesis enhanced anticancer ability[J]. Journal of Bioscience and Bioengineering,2021,131(1):98−106. doi: 10.1016/j.jbiosc.2020.08.007
    [83]
    CHEN X, XU X, ZHANG L, et al. Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-d-glucan from Poria cocos[J]. Carbohydrate Polymers,2009,78(3):581−587. doi: 10.1016/j.carbpol.2009.05.019
    [84]
    牛庆川. 马齿苋多糖的羧甲基修饰及抗肿瘤活性的研究[D]. 南昌: 江西科技师范大学, 2020

    NIU Q C. Study on the carboxymethyl modification and antitumor activity of polysaccharide from natural Portulaca oleracea L.[D]. Nanchang: Jiangxi Science and Technology Normal University, 2020.
    [85]
    宋波, 李小莲, 吴一周, 等. 羧甲基茯苓多糖的制备及抗肿瘤活性研究[J]. 中国现代应用药学,2019,36(11):1328−1332. [SONG B, LI X L, WU Y Z, et al. Study on preparation and anti-tumor activity of carboxymethylpachymaran[J]. Chinese Journal of Modern Applied Pharmacy,2019,36(11):1328−1332. doi: 10.13748/j.cnki.issn1007-7693.2019.11.003
    [86]
    聂瑞红. 硒化Rhizobium sp. N613胞外多糖的制备及其生物活性研究[D]. 太原: 山西大学, 2013

    NIE R H. Preparation and study on biological activity of selenium exoplysaccharide from Rhizobium sp. N613[D]. Taiyuan: Shanxi University, 2013.
    [87]
    TAO Y, ZHANG Y, ZHANG L. Chemical modification and antitumor activities of two polysaccharide-protein complexes from Pleurotus tuber-regium[J]. International Journal of Biological Macromolecules,2009,45(2):109−115. doi: 10.1016/j.ijbiomac.2009.04.010
    [88]
    MAO G, LI Q, DENG C, et al. The synergism and attenuation effect of selenium (Se)-enriched Grifola frondosa (Se)-polysaccharide on 5-fluorouracil (5-Fu) in Heps-bearing mice[J]. International Journal of Biological Macromolecules,2018,107:2211−2216. doi: 10.1016/j.ijbiomac.2017.10.084
    [89]
    ZHOU L, SONG Z, ZHANG S, et al. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae)[J]. International Journal of Biological Macromolecules,2021,188:904−913. doi: 10.1016/j.ijbiomac.2021.07.142
    [90]
    GU Y, QIU Y, WEI X, et al. Characterization of selenium-containing polysaccharides isolated from selenium-enriched tea and its bioactivities[J]. Food chemistry,2020,316:126371. doi: 10.1016/j.foodchem.2020.126371
    [91]
    SONG S, PENG H, WANG Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2[J]. Food & Function,2020,11(9):7415−7420.
    [92]
    CHEN L, HUANG G. The antiviral activity of polysaccharides and their derivatives[J]. International Journal of Biological Macromolecules,2018,115:77−82. doi: 10.1016/j.ijbiomac.2018.04.056
    [93]
    ANDREW M, JAYARAMAN G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19)[J]. Carbohydrate Research, 2021: 108326.
    [94]
    MING K, CHEN Y, YAO F, et al. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis a virus compared with Codonopsis pilosula polysaccharide[J]. International Journal of Biological Macromolecules,2017,94:28−35. doi: 10.1016/j.ijbiomac.2016.10.002
    [95]
    FENG H, FAN J, YANG S, et al. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against canine parvovirus in vitro[J]. International Journal of Biological Macromolecules,2017,99:511−518. doi: 10.1016/j.ijbiomac.2017.02.085
    [96]
    DUAN Z, ZHANG Y, ZHU C, et al. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice[J]. International Journal of Biological Macromolecules,2020,162:533−547. doi: 10.1016/j.ijbiomac.2020.06.107
    [97]
    JING L, ZONG S, LI J, et al. Potential mechanism of protection effect of exopolysaccharide from Lachnum YM406 and its derivatives on carbon tetrachloride-induced acute liver injury in mice[J]. Journal of Functional Foods,2017,36:203−214. doi: 10.1016/j.jff.2017.06.057
    [98]
    AMORIM R N S, RODRIGUES J A G, HOLANDA M L, et al. Antimicrobial effect of a crude sulfated polysaccharide from the red seaweedGracilaria ornata[J]. Brazilian Archives of Biology and Technology,2012,55:171−181. doi: 10.1590/S1516-89132012000200001
    [99]
    LI Y T, CHEN B J, WU W D, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. International Journal of Biological Macromolecules,2018,118:1550−1557. doi: 10.1016/j.ijbiomac.2018.06.196
    [100]
    MADRUGA L Y C, SABINO R M, SANTOS E C G, et al. Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities[J]. International Journal of Biological Macromolecules,2020,152:483−491. doi: 10.1016/j.ijbiomac.2020.02.274
    [101]
    CHIBA M, FUJIMOTO N, OYAMADA N, et al. Interactions between selenium and tin, selenium and lead, and their effects on alad activity in blood[J]. Biological Trace Element Research,1985,8(4):263−282. doi: 10.1007/BF02989581
    [102]
    DAS T M, RAO C P, KOLEHMAINEN E. Interaction of metal ions with N-glycosylamines: Isolation and characterization of the products of 4, 6-O-benzylidene-N-(o-carboxyphenyl)-β-d-glucopyranosylamine with different metal ions[J]. Carbohydrate Research,2001,335(3):151−158. doi: 10.1016/S0008-6215(01)00234-8
    [103]
    KESHAVARZ-REZAEI M, HATAMIAN-ZARMI A, ALVANDI H, et al. The HbA1c and blood glucose response to selenium-rich polysaccharide from Fomes fomentarius loaded solid lipid nanoparticles as a potential antidiabetic agent in rats[J]. Biomaterials Advances,2022,140:213084. doi: 10.1016/j.bioadv.2022.213084
    [104]
    王峙力, 王鑫, 韩烨, 等. 甜玉米芯硒多糖的制备及其对淀粉酶抑制作用[J]. 包装工程,2021,42(21):33−41. [WANG S L, WANG X, HAN Y, et al. Preparation of selenium polysaccharide from sweet corncob and its inhibitory effect on amylase[J]. Packaging Engineering,2021,42(21):33−41. doi: 10.19554/j.cnki.1001-3563.2021.21.005
    [105]
    SURHIO M M, WANG Y, XU P, et al. Antihyperlipidemic and hepatoprotective properties of selenium modified polysaccharide from Lachnum sp[J]. International Journal of Biological Macromolecules,2017,99:88−95. doi: 10.1016/j.ijbiomac.2017.01.148
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (341) PDF downloads (100) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return