Citation: | HUI Sen, ZHU Xuhao, LIU Xiaoling, et al. Stability and Mechanism of Oyster Peptide Hydrolysate Zinc Nanoparticles during in Vitro Gastrointestinal Digestion[J]. Science and Technology of Food Industry, 2023, 44(11): 38−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110206. |
[1] |
DEPCIUCH J, SOWA-KUCMA M, NOWAK G, et al. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy[J]. Biomed Pharmacother,2017,89:549−558. doi: 10.1016/j.biopha.2017.01.180
|
[2] |
WANG C, LI B, AO J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC-MS/MS[J]. Food Chem,2012,134(2):1231−1238. doi: 10.1016/j.foodchem.2012.02.204
|
[3] |
曹玉惠, 张娟娟, 王再扬, 等. 牡蛎源类蛋白反应修饰肽的分离纯化及肽锌螯合物的结构表征[J]. 高等学校化学学报,2018,39(3):470−475. [CAO Y H, ZHANG J J, WANG Z Y, et al. Separation and identification of oyster peptide modified by plastein reaction and characterization of peptide-zinc complexes[J]. Chemical Journal of Chinese Universities,2018,39(3):470−475. doi: 10.7503/cjcu20170570
|
[4] |
LIU X, WANG Z, YIN F, et al. Zinc-chelating mechanism of sea cucumber (Stichopus japonicus)-derived synthetic peptides[J]. Mar Drugs,2019,17(8):438. doi: 10.3390/md17080438
|
[5] |
王玉婷, 王志耕, 梅林, 等. 酪蛋白锌螯合工艺优化及其结合位点解[J]. 食品与发酵工业,2016,42(11):142−147. [WANG Y T, WANG Z G, MEI L, et al. Optimization of chelating process parameters of casein zinc and its binding sites analysis[J]. Food and Fermentation Industries,2016,42(11):142−147. doi: 10.13995/j.cnki.11-1802/ts.201611025
|
[6] |
PRASAD A S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging[J]. J Trace Elem Med Biol,2014,28(4):364−371. doi: 10.1016/j.jtemb.2014.07.019
|
[7] |
MIQUEL E, FARRÉ R. Effects and future trends of casein phosphopeptides on zinc bioavailability[J]. Trends in Food Science & Technology,2007,18(3):139−143.
|
[8] |
王允茹, 蔡秋杏, 张晨晓, 等. 北部湾海区三种常见牡蛎的蛋白质及氨基酸营养分析与评价[J]. 食品工业科技,2022,43(7):310−316. [[WANG Y R, CAI Q X, ZHANG C X, et al. Analysis and evaluation of protein and amino acid nutrition of three common oysters in Beibu Gulf[J]. Science and Technology of Food Industry,2022,43(7):310−316. doi: 10.13386/j.issn1002-0306.2021070302
|
[9] |
CHEN D, LIU Z, HUANG W, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Foods,2013,5(2):689−697. doi: 10.1016/j.jff.2013.01.012
|
[10] |
ZHANG Z, ZHOU F, LIU X, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chem,2018,258:269−277. doi: 10.1016/j.foodchem.2018.03.030
|
[11] |
LI C, BU G, CHEN F, et al. Preparation and structural characterization of peanut peptide-zinc chelate[J]. CyTA-Journal of Food,2020,18(1):409−416. doi: 10.1080/19476337.2020.1767695
|
[12] |
SUN R, LIU X, YU Y, et al. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate[J]. Food Chem,2021,340:128056. doi: 10.1016/j.foodchem.2020.128056
|
[13] |
刘晶晶, 徐蕴桃, 朱晨慧, 等. 河蚬抗氧化肽—锌螯合物的制备及结构表征[J]. 食品与机械,2020,36(10):28−31, 48. [LIU J J, XUN Y T, ZHU C H, et al. Preparation and structural characterization of zinc-binding antioxidant peptides from Corbicula fluminea hydrolysate[J]. Food & Machinery,2020,36(10):28−31, 48. doi: 10.13652/j.issn.1003-5788.2020.10.006
|
[14] |
SUN N, CUI P, LIN S, et al. Characterization of sea cucumber (Stichopus japonicus) ovum hydrolysates: Calcium chelation, solubility and absorption into intestinal epithelial cells[J]. J Sci Food Agric,2017,97(13):4604−4611. doi: 10.1002/jsfa.8330
|
[15] |
柯枭, 胡晓, 杨贤庆, 等. 罗非鱼皮胶原蛋白肽-锌螯合物的制备及结构表征与体外消化分析[J]. 食品与发酵工业,2021,47(14):38−44. [KE X, HU X, YANG X Q, et al. Preparation, structure characterization and in vitro gastrointestinal digestion of tilapia skin collagen peptide-zinc chelate[J]. Food and Fermentation Industries,2021,47(14):38−44. doi: 10.13995/j.cnki.11-1802/ts.026625
|
[16] |
ZHANG Y, NIU Y, LUO Y, et al. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers[J]. Food Chem,2014,142:269−275. doi: 10.1016/j.foodchem.2013.07.058
|
[17] |
WALCZAK A P, KRAMER E, HENDRIKSEN P J, et al. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model[J]. Nanotoxicology,2015,9(7):886−894. doi: 10.3109/17435390.2014.988664
|
[18] |
刘艳, 谷瑞增, 贾福怀, 等. 牡蛎肽螯合锌成分分析、结构表征及促细胞增殖作用[J]. 食品工业,2019,40(9):221−224. [LIU Y, GU R Z, JIA F H, et al. Composition analysis, structural characterization and promoting cell proliferation of oyster peptide-zinc chelates[J]. The Food Industry,2019,40(9):221−224.
|
[19] |
富天昕, 张舒, 盛亚男, 等. 绿豆多肽锌螯合物的制备及其结构与体外消化的分析[J]. 食品科学,2020,41(4):59−66. [FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestibility of zinc-chelating mung bean peptide[J]. Food Science,2020,41(4):59−66. doi: 10.7506/spkx1002-6630-20190710-137
|
[20] |
LI J, GONG C, WANG Z, et al. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc[J]. Mar Drugs,2019,17(6):341. doi: 10.3390/md17060341
|
[21] |
WANG B, XIE N, LI B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review[J]. J Food Biochem,2019,43(1):e12571. doi: 10.1111/jfbc.12571
|
[22] |
CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
|
[23] |
ZHAO L, HUANG Q, HUANG S, et al. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode[J]. J Agric Food Chem,2014,62(42):10274−10282. doi: 10.1021/jf502412f
|
[24] |
WANG Y, LI M, XU X, et al. Formation of protein corona on nanoparticles with digestive enzymes in simulated gastrointestinal fluids[J]. J Agric Food Chem,2019,67(8):2296−2306. doi: 10.1021/acs.jafc.8b05702
|
[25] |
ZHAO L, HUANG S, CAI X, et al. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate[J]. Journal of Functional Foods,2014,10:46−53. doi: 10.1016/j.jff.2014.05.013
|
[26] |
BEYER R L, HOANG H N, APPLETON T G, et al. Metal clips induce folding of a short unstructured peptide into an alpha-helix via turn conformations in water. Kinetic versus thermodynamic products[J]. Journal of The American Chemical Society,2004,126(46):15096−150105. doi: 10.1021/ja0453782
|
[27] |
CUI P, LIN S, HAN W, et al. The formation mechanism of a sea cucumber ovum derived heptapeptide-calcium nanocomposite and its digestion/absorption behavior[J]. Food Funct,2019,10(12):8240−8249. doi: 10.1039/C9FO01335K
|
[28] |
SONTZ P A, SONG W J, TEZCAN F A. Interfacial metal coordination in engineered protein and peptide assemblies[J]. Curr Opin Chem Biol,2014,19:42−49. doi: 10.1016/j.cbpa.2013.12.013
|
[29] |
CUI P, LIN S, JIN Z, et al. In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide-calcium complex[J]. Food Funct,2018,9(9):4582−4592. doi: 10.1039/C8FO00910D
|
[30] |
PEREGO S, DEL FAVERO E, DE LUCA P, et al. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide-calcium aggregates[J]. Food Funct,2015,6(6):1796−1807. doi: 10.1039/C4FO00672K
|
[31] |
CUI P, SUN N, JIANG P, et al. Optimised condition for preparing sea cucumber ovum hydrolysate-calcium complex and its structural analysis[J]. International Journal of Food Science & Technology,2017,52(8):1914−1922.
|
[32] |
GUERIN J, KRIZNIK A, RAMALANJAONA N, et al. Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state[J]. Food Chem,2016,209:114−122. doi: 10.1016/j.foodchem.2016.04.047
|
[33] |
ZHU S, ZHENG Y, HE S, et al. Novel Zn-binding peptide isolated from soy protein hydrolysates: Purification, structure, and digestion[J]. J Agric Food Chem,2021,69(1):483−490. doi: 10.1021/acs.jafc.0c05792
|
[34] |
LIAO W, LAI T, CHEN L, et al. Synthesis and characterization of a walnut peptides-zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis[J]. J Agric Food Chem,2016,64(7):1509−1519. doi: 10.1021/acs.jafc.5b04924
|
1. |
陈荣荣,李文,吴迪,张忠,鲍大鹏,杨焱,陈万超. 大球盖菇风味肽的制备及其抗氧化活性研究. 食品与生物技术学报. 2024(10): 140-152 .
![]() | |
2. |
白慧,陈若飞,阚欢,郭磊. 响应面法优化美味牛肝菌伞部及柄部多酚氧化酶的提取工艺. 粮食与油脂. 2023(07): 138-141 .
![]() | |
3. |
张沙沙,杨宁,张微思,罗晓莉,周锫,曹晶晶,孙达锋. 兰茂牛肝菌酶解液的制备工艺优化及滋味评价. 现代食品科技. 2023(09): 72-80 .
![]() | |
4. |
张娅俐,洪晶,曹竑,田晓静,王婷婷,张福梅,柏家林,丁功涛,马忠仁,宋礼. 胃蛋白酶水解藏羊血清蛋白工艺研究. 安徽农业科学. 2022(03): 174-177+208 .
![]() | |
5. |
栾俊家,张尚悦,李昂达,李学鹏,励建荣,林洪,王明丽,郭晓华,于建洋,周小敏. 响应面法优化秋刀鱼酶解制备抗氧化活性肽的工艺. 食品工业科技. 2022(05): 172-181 .
![]() | |
6. |
刘子轩,高雅,王文倩,章慧莺,陈海涛,黄典,曾艳. 不同品种食用菌制备热反应肉味基料风味差异分析. 食品科学技术学报. 2022(01): 30-43 .
![]() | |
7. |
唐寅,吕晓帆,王莹,吴亚妮. 龙脑樟精油的化学成分、抗氧化活性和认知改善作用研究. 日用化学工业. 2021(11): 1095-1101 .
![]() | |
8. |
于莹,宿小杰,周德庆,刘楠,孙永,王珊珊. 响应面法优化紫贻贝免疫活性肽的制备工艺. 中国海洋药物. 2021(06): 21-29 .
![]() |