Citation: | ZHAO Zhiyao, LIU Minghao, BAI Lin, et al. Regulation and Analysis of Food Safety Based on Machine Learning[J]. Science and Technology of Food Industry, 2024, 45(11): 11−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090288. |
[1] |
王文月, 臧明伍, 张辉, 等. 我国食品科技创新力量布局现状与发展建议[J]. 食品科学,2022,43(13):336−341. [WANG W Y, ZANG M W, ZHANG H, et al. Current status of and development suggestions for food science and technology innovation power layout in China[J]. Food Science,2022,43(13):336−341.]
WANG W Y, ZANG M W, ZHANG H, et al. Current status of and development suggestions for food science and technology innovation power layout in China[J]. Food Science, 2022, 43(13): 336−341.
|
[2] |
市场监管总局关于2020年市场监管部门食品安全监督抽检情况的通告[J]. 中国食品卫生杂志, 2021, 33(3):396. [Circular of the state administration for market regulation on the food safety supervision and sampling of market supervision departments in 2020[J]. Chinese Journal of Food Hygiene, 2021, 33(3):396.]
Circular of the state administration for market regulation on the food safety supervision and sampling of market supervision departments in 2020[J]. Chinese Journal of Food Hygiene, 2021, 33(3): 396.
|
[3] |
ZHU L, WU M Y, LI R Y, et al. Research progress on pesticide residue detection based on microfluidic technology[J]. Electrophoresis,2023,44(17-18):1377−1404. doi: 10.1002/elps.202300048
|
[4] |
CRUZ I M, ORTIZ E L, DREHER M P, et al. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables[J]. Food Science and Technology,2022,165:113714.
|
[5] |
JASON B, HARRIET W, KIRSTIN R, et al. Defining food safety inspection[J]. International Journal of Environmental Research and Public Health,2022,19(2):789. doi: 10.3390/ijerph19020789
|
[6] |
谭晨. 食品安全法相关制度对产品质量法修订的启示[J]. 中国市场监管研究,2019,321(7):10−13,25. [TAN C. Enlightenment of the relevant systems of the food safety law on the revision of the product quality law[J]. Research on China market supervision,2019,321(7):10−13,25.]
TAN C. Enlightenment of the relevant systems of the food safety law on the revision of the product quality law[J]. Research on China market supervision, 2019, 321(7): 10−13,25.
|
[7] |
朱利莎. 食品安全全程追溯制度探析[J]. 中国调味品,2019,44(7):191−194. [ZHU L S. Analysis of the whole-process traceability system of food safety[J]. China Condiment,2019,44(7):191−194.]
ZHU L S. Analysis of the whole-process traceability system of food safety[J]. China Condiment, 2019, 44(7): 191−194.
|
[8] |
卢江. 对我国食品安全重大风险早期识别与快速预警机制建设的思考[J]. 中国食品卫生杂志,2020,32(2):113−117. [LU J. Considerations on building the framework of early identification an rapid alert of food safety risks in China[J]. Chinese Journal of Food Hygiene,2020,32(2):113−117.]
LU J. Considerations on building the framework of early identification an rapid alert of food safety risks in China[J]. Chinese Journal of Food Hygiene, 2020, 32(2): 113−117.
|
[9] |
庞文媛, 孙意岚, 王芹, 等. 机器学习在花果茶生产加工中的应用进展[J]. 食品安全质量检测学报,2023,14(11):181−189. [PANG W Y, SUN Y L, WANG Q, et al. Application progress of machine learning in the production and processing of flower and fruit tea[J]. Journal of Food Safety & Quality,2023,14(11):181−189.]
PANG W Y, SUN Y L, WANG Q, et al. Application progress of machine learning in the production and processing of flower and fruit tea[J]. Journal of Food Safety & Quality, 2023, 14(11): 181−189.
|
[10] |
GUO K, YANG Z Z, YU C H, et al. Artificial intelligence and machine learning in design of mechanical materials[J]. Materials Horizons,2021,8(4):1153−1172.
|
[11] |
AN Q, SAIFUR R, ZHOU J W, et al. A comprehensive review on machine learning in healthcare industry:Classification, restrictions, opportunities and challenges[J]. Sensors (Basel, Switzerland),2023,23(9):4178. doi: 10.3390/s23094178
|
[12] |
师亮, 温亮明, 雷声, 等. 基于决策树和由均匀分布改进Q学习的虚拟机整合算法[J]. 计算机科学,2023,50(6):36−44. [SHI L, WEN L M, LEI S, et al. Virtual machine consolidation algorithm based on decision tree and improved Q-learning by uniform distribution[J]. Computer Science,2023,50(6):36−44.]
SHI L, WEN L M, LEI S, et al. Virtual machine consolidation algorithm based on decision tree and improved Q-learning by uniform distribution[J]. Computer Science, 2023, 50(6): 36−44.
|
[13] |
LIU G X, WANG L G, LIU D F, et al. Hyperspectral image classification based on non-parallel support vector machine[J]. Remote Sensing,2022,14(10):4263.
|
[14] |
SETHI KAUR J, MITTAL M, et al. Efficient weighted naive bayes classifiers to predict air quality index[J]. Earth Science Informatics,2022,15:541−552. doi: 10.1007/s12145-021-00755-7
|
[15] |
HAN Y, ZOU Z Q, LI N, et al. Identifying outliers in astronomical images with unsupervised machine learning[J]. Research in Astronomy and Astrophysics,2022,22(8):085006. doi: 10.1088/1674-4527/ac7386
|
[16] |
LI Y P, ZHOU X B, GU J G, et al. A novel k-means clustering method for locating urban hotspots based on hybrid heuristic initialization[J]. Applied Sciences,2022,12(16):8047. doi: 10.3390/app12168047
|
[17] |
邓子江, 刘勇, 张祥, 等. 基于隐马尔可夫模型的不稳定燃烧模式早期预测方法[J]. 计算机应用,2022,42(S1):380−385. [DENG Z J, LIU Y, ZHANG X, et al. Early prediction method of unstable combustion mode based on hidde Markov model[J]. Journal of Computer Applications,2022,42(S1):380−385.]
DENG Z J, LIU Y, ZHANG X, et al. Early prediction method of unstable combustion mode based on hidde Markov model[J]. Journal of Computer Applications, 2022, 42(S1): 380−385.
|
[18] |
ZHU L L, PETROS S, ERICA P, et al. Deep learning and machine vision for food processing:A survey[J]. Current Research in Food Science,2021,4:233−249. doi: 10.1016/j.crfs.2021.03.009
|
[19] |
TAZMAN D, YU C J L, TAILANE S, et al. An innovative machine learning approach to predict the dietary fiber content of packaged foods[J]. Nutrients,2021,13(9):3195. doi: 10.3390/nu13093195
|
[20] |
杨鸿雁, 田英杰. 机器学习在食品安全风险预警及抽检方案制订中的应用研究[J]. 管理评论,2022,34(11):315−323. [YANG H Y, TIAN Y J. Application research of machine learning in food safety risk early warn and sampling inspection program[J]. Management Review,2022,34(11):315−323.]
YANG H Y, TIAN Y J. Application research of machine learning in food safety risk early warn and sampling inspection program[J]. Management Review, 2022, 34(11): 315−323.
|
[21] |
李炳臻, 刘克, 顾佼佼, 等. 卷积神经网络研究综述[J]. 计算机时代,2021,346(4):8−12,17. [LI B Z, LIU K, GU J J, et al. Review of the researches on convolutional neural networks[J]. Computer Era,2021,346(4):8−12,17.]
LI B Z, LIU K, GU J J, et al. Review of the researches on convolutional neural networks[J]. Computer Era, 2021, 346(4): 8−12,17.
|
[22] |
YAVUZ U, SELIM Y T, ILKAY C, et al. Application of pre-trained deep convolutional neural networks for coffee beans species detection[J]. Food Analytical Methods,2022,15(12):3232−3243. doi: 10.1007/s12161-022-02362-8
|
[23] |
KAZI A, PANDA S P, et al. Determining the freshness of fruits in the food industry by image classification using transfer learning[J]. Multimedia Tools and Applications,2022,81:7611−7624. doi: 10.1007/s11042-022-12150-5
|
[24] |
王良玉, 张明林, 祝洪涛, 等. 人工神经网络及其在地学中的应用综述[J]. 世界核地质科学,2021,38(1):15−26. [WANG L Y, ZHANG M L, ZHU H T, et al. Review on artificial neural networks and their applications in geoscienc[J]. World Nuclear Geoscience,2021,38(1):15−26.]
WANG L Y, ZHANG M L, ZHU H T, et al. Review on artificial neural networks and their applications in geoscienc[J]. World Nuclear Geoscience, 2021, 38(1): 15−26.
|
[25] |
JIANG Q Y, ZHANG M, S. A M, et al. Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling[J]. Journal of Food Engineering,2023,343:111374. doi: 10.1016/j.jfoodeng.2022.111374
|
[26] |
LIU Y, WU Q, HUANG J, et al. Comparison of apple firmness prediction models based on non-destructive acoustic signal[J]. International Journal of Food Science & Technology,2021,56:6443−6450.
|
[27] |
邵元海, 刘黎明, 黄凌伟, 等. 支持向量机的关键问题和展望[J]. 中国科学:数学,2020,50(9):1233−1248. [SHAO Y H, LIU L M, HUANG L W, et al. Key issues of support vector machines and future prospects[J]. Science China Mathematics,2020,50(9):1233−1248.]
SHAO Y H, LIU L M, HUANG L W, et al. Key issues of support vector machines and future prospects[J]. Science China Mathematics, 2020, 50(9): 1233−1248.
|
[28] |
ZHU L L, PETROS S. Support vector machine and YOLO for a mobile food grading system[J]. Internet of Things,2021,13:100359. doi: 10.1016/j.iot.2021.100359
|
[29] |
DU Y W, HAN D P, LIIU S, et al. Raman spectroscopy-based adversarial network combined with SVM for detection of foodborne pathogenic bacteria[J]. Talanta,2022,237:122901. doi: 10.1016/j.talanta.2021.122901
|
[30] |
RENWICK J B, FRANCIS E. Exploration of principal component analysis:Deriving principal component analysis visually using spectra[J]. Applied Spectroscopy,2021,75(4):361−375. doi: 10.1177/0003702820987847
|
[31] |
ZOU M, CHEN Y, HU C R, et al. Physicochemical properties of rice bran blended oil in deep frying by principal component analysis[J]. Journal of Food Science and Technology,2022,59(11):4187−4197. doi: 10.1007/s13197-022-05472-7
|
[32] |
JIANG Y F, SU M K, YU T, et al. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced raman spectroscopy[J]. Food Chemistry,2020,344:128709.
|
[33] |
VIVEK K, SUBBARAO K, ROUTRAY W, et al. Application of fuzzy logic in sensory evaluation of food products:A comprehensive study[J]. Food and Bioprocess Technology:An International Journal,2020,13(1):1−29. doi: 10.1007/s11947-019-02337-4
|
[34] |
WU J Z, OUYANG Q, BOSOON P, et al. Physicochemical indicators coupled with multivariate analysis for comprehensive evaluation of matcha sensory quality[J]. Food Chemistry,2022,371:131100. doi: 10.1016/j.foodchem.2021.131100
|
[35] |
张银萍, 朱双杰, 徐燕, 等. 基于机器视觉的猴头菇品质快速无损检测与分级[J]. 现代食品科技,2023,39(3):239−246. [ZHANG Y P, ZHU S J, XU Y, et al. Rapid non-destructive testing and grading of hericium erinaceus based machine vision[J]. Modern Food Science & Technology,2023,39(3):239−246.]
ZHANG Y P, ZHU S J, XU Y, et al. Rapid non-destructive testing and grading of hericium erinaceus based machine vision[J]. Modern Food Science & Technology, 2023, 39(3): 239−246.
|
[36] |
ELENI V, CHRISTOS B, MICHAIL M, et al. Machine vision for ripeness estimation in viticulture automation[J]. Horticulturae,2021,7(9):282. doi: 10.3390/horticulturae7090282
|
[37] |
XIE T H, LI X X, ZHANG X S, et al. Detection of atlantic salmon bone residues using machine vision technology[J]. Food Control,2020,123:107787.
|
[38] |
姬莉莉, 闫雪. 食品中微生物限量要求及检测技术发展趋势[J]. 食品安全质量检测学报,2021,12(2):459−465. [JI L L, YAN X. Requirements of microbial limit and development trend of detection technology[J]. Journal of Food Safety & Quality,2021,12(2):459−465.]
JI L L, YAN X. Requirements of microbial limit and development trend of detection technology[J]. Journal of Food Safety & Quality, 2021, 12(2): 459−465.
|
[39] |
KENTO K, JUKKA R, KOHEI T, et al. Evaluation of strain variability in inactivation of campylobacter jejuni in simulated gastric fluid by using hierarchical bayesian modeling[J]. Applied and Environmental Microbiology,2021,87(15):e0091821. doi: 10.1128/AEM.00918-21
|
[40] |
WANG Z X, XIAO L S, LI X M, et al. Prediction model of ocean food microbe growth based on neural network and its simulation[C]//Intelligent Information Technology Application Association. 2011 International Conference on Computers, Communications, Control and Automation Hong Kong, Peoples R China:2011:6.
|
[41] |
LI C J, ZHU H M, LI C Y, et al. The present situation of pesticide residues in China and their removal and transformation during food processing[J]. Food Chemistry,2021,354:129552. doi: 10.1016/j.foodchem.2021.129552
|
[42] |
NENG J, WANG J N, WANG Y, et al. Trace analysis of food by surface-enhanced raman spectroscopy combined with molecular imprinting technology:Principle, application, challenges, and prospects[J]. Food Chemistry,2023,429:136883. doi: 10.1016/j.foodchem.2023.136883
|
[43] |
刘玉航, 曲媛, 蒋嘉铭, 等. 基于优化随机森林算法预测食品检验不合格指标[J]. 食品安全质量检测学报,2021,12(18):7467−7472. [LIU Y H, QU Y, JIANG J M, et al. Prediction of unqualified index of food inspection based on optimized random forest algorithm[J]. Journal of Food Safety & Quality,2021,12(18):7467−7472.]
LIU Y H, QU Y, JIANG J M, et al. Prediction of unqualified index of food inspection based on optimized random forest algorithm[J]. Journal of Food Safety & Quality, 2021, 12(18): 7467−7472.
|
[44] |
李旭青, 李龙, 庄连英, 等. 基于小波变换和BP神经网络的水稻冠层重金属含量反演[J]. 农业机械学报,2019,50(6):226−232. [LI X Q, LI L, ZHUANG L Y, et al. Inversion of heavy metal content in rice canopy based on wavelet transform and BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):226−232.]
LI X Q, LI L, ZHUANG L Y, et al. Inversion of heavy metal content in rice canopy based on wavelet transform and BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 226−232.
|
[45] |
SELLAMUTHU K, KALIAPPAN K V. Q-Learning-based pesticide contamination prediction in vegetables and fruits[J]. Computer Systems Science and Engineering,2023,45(1):715−736. doi: 10.32604/csse.2023.029017
|
[46] |
SAMANTHA I, JONATHAN C. Food traceability:A generic theoretical framework[J]. Food Control,2021,123:107848. doi: 10.1016/j.foodcont.2020.107848
|
[47] |
CHEN T, DING K, HAO S, et al. Batch-based traceability for pork:a mobile solution with 2D barcode technology[J]. Food Control,2020,107:106770. doi: 10.1016/j.foodcont.2019.106770
|
[48] |
符春彦. 我国食品追溯的发展及相关解决方案探讨[J]. 食品安全导刊,2020,287(28):32−35. [FU C Y. The development of food traceability and related solutions in China[J]. China Food Safety Magazine,2020,287(28):32−35.]
FU C Y. The development of food traceability and related solutions in China[J]. China Food Safety Magazine, 2020, 287(28): 32−35.
|
[49] |
CHEN Y, CHEN T, LI J. A machine learning-based anomaly detection method and blockchain-based secure protection technology in collaborative food supply chain. International Journal of E-collaboration[J]. International Journal of E-collaboration,2023,19(1):1−24.
|
[50] |
ZEINAB S, YUNGCHEOL B. A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic[J]. Electronics,2020,10(1):41. doi: 10.3390/electronics10010041
|
[51] |
KANG Z L, ZHAO Y C, CHEN L, et al. Advances in machine learning and hyperspectral imaging in the food supply chain[J]. Food Engineering Reviews,2022,14(4):596−616. doi: 10.1007/s12393-022-09322-2
|
[52] |
孙堃. 基于机器学习的食品供应链需求预测研究[D]. 北京:华北电力大学(北京), 2020. [SUN K. Food supply chain demand forecasting based on machine learning[D]. Beijing:North China Electric Power University (Beijing), 2020.]
SUN K. Food supply chain demand forecasting based on machine learning[D]. Beijing: North China Electric Power University (Beijing), 2020.
|
[53] |
SOON M J, BRAZIER K A, WALLACE A C. Determining common contributory factors in food safety incidents–a review of global outbreaks and recalls 2008–2018[J]. Trends in Food Science & Technology,2020,97(C):76−87.
|
[54] |
LIU N J, YAMINE B, BULK L, et al. Automated food safety early warning system in the dairy supply chain using machine learning[J]. Food Control, 2022, 136.
|
[55] |
马娇豪, 周志强, 郑其良, 等. 我国食品安全风险评估现状分析[J]. 饮料工业,2021,24(3):71−74. [MA J H, ZHOU Z Q, ZHENG Q L, et al. Status analysis of food safety risk assessment in China[J]. The Beverage Industry,2021,24(3):71−74.]
MA J H, ZHOU Z Q, ZHENG Q L, et al. Status analysis of food safety risk assessment in China[J]. The Beverage Industry, 2021, 24(3): 71−74.
|
[56] |
WANG Y J, MENGHUI L, LI L Q, et al. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer[J]. Food Chemistry,2021,345:128816. doi: 10.1016/j.foodchem.2020.128816
|
[57] |
HUANG L. Dynamic analysis of growth of Salmonella spp. in raw ground beef–estimation of kinetic parameters, sensitivity analysis, and markov chain monte carlo simulation[J]. Food Control,2020,108:106845. doi: 10.1016/j.foodcont.2019.106845
|
[58] |
熊慧, 唐宏亮, 丁永. 基于改进HMM的食品安全风险评估方法[J]. 食品与机械,2021,37(11):72−76. [XIONG H, TANG H L, DING Y. Food safety risk assessment method based on improved HMM[J]. Food & Machinery,2021,37(11):72−76.]
XIONG H, TANG H L, DING Y. Food safety risk assessment method based on improved HMM[J]. Food & Machinery, 2021, 37(11): 72−76.
|
[59] |
WANG Z Z, WU Z X, ZOU M K, et al. A voting-based ensemble deep learning method focused on multi-step prediction of food safety risk levels:Applications in hazard analysis of heavy metals in grain processing products[J]. Foods,2022,11(6):823. doi: 10.3390/foods11060823
|
[60] |
管庆林, 周笑犁, 韦雪, 等. 不同贮藏温度下香菇油辣椒酱品质变化规律及货架期预测[J]. 食品研究与开发,2022,43(22):145−152. [GUAN Q L, ZHOU X L, WEI X, et al. Quality changes and predictive modeling of shelf life of lentinus edods oil chili sauce stored at different temperatures[J]. Food Research and development,2022,43(22):145−152.]
GUAN Q L, ZHOU X L, WEI X, et al. Quality changes and predictive modeling of shelf life of lentinus edods oil chili sauce stored at different temperatures[J]. Food Research and development, 2022, 43(22): 145−152.
|
[61] |
YU S H, LAN H P, LI X L, et al. Prediction method of shelf life of damaged korla fragrant pears[J]. Journal of Food Process Engineering,2021,44(12):e13902. doi: 10.1111/jfpe.13902
|
[62] |
MAO S C, ZHOU J P, HAO M, et al. BP neural network to predict shelf life of channel catfish fillets based on near infrared transmittance (NIT) spectroscopy[J]. Food Packaging Shelf,2023,35:101025. doi: 10.1016/j.fpsl.2023.101025
|
[63] |
RADOŠ K, ČUKELJ MUSTAČ N, BENKOVIĆ M, et al. The quality and shelf life of biscuits with cryo-ground proso millet and buckwheat by-products[J]. Journal of Food Processing and Preservation,2022,46(10):e15532.
|
[64] |
MATHANGI S R, SHUKADEV M, PRATAP K S. Effect of packaging and storage conditions on quality and shelf life of soy chaap[J]. Journal of Food Processing and Preservation,2022,46(9):e16895.
|
[65] |
ANASTASIA K, ESQUERRE C A, DO NASCIMENTO N C M, et al. A decision support tool for shelf-life determination of strawberries using hyperspectral imaging technology[J]. Biosystems Engineering,2022,221:105−117. doi: 10.1016/j.biosystemseng.2022.06.013
|
[66] |
LIU P H, QIAO Y C, HOU B R, et al. Building kinetic models to determine moisture content in apples and predicting shelf life based on spectroscopy[J]. Journal of Food Process Engineering,2021,44(12):e13907. doi: 10.1111/jfpe.13907
|
[67] |
宣晓婷, 陈思媛, 乐耀元, 等. 高水分南美白对虾虾干货架期预测模型的构建[J]. 农产品加工,2022,561(19):78−82,90. [XUAN X T, CHEN S Y, LE Y Y, et al. Construction of shelf-life predictive model for dried penaeus vannamei with high moisture[J]. Farm Products Processing,2022,561(19):78−82,90.]
XUAN X T, CHEN S Y, LE Y Y, et al. Construction of shelf-life predictive model for dried penaeus vannamei with high moisture[J]. Farm Products Processing, 2022, 561(19): 78−82,90.
|
[68] |
FANANY I A I A, MUHAMMAD K, KRISNA A A, et al. Odor clustering using a gas sensor array system of chicken meat based on temperature variations and storage time[J]. Sensing and Bio-Sensing Research,2022,37:100508. doi: 10.1016/j.sbsr.2022.100508
|
[69] |
YAVUZER E, KÖSE M. Prediction of fish quality level with machine learning[J]. International Journal of Food Science and Technology,2022,57(8):5250−5255. doi: 10.1111/ijfs.15853
|
1. |
谷静,郑丽君. 我国安全文化研究的演进脉络、研究热点与前沿趋势. 河北能源职业技术学院学报. 2025(01): 24-32+38 .
![]() | |
2. |
陈晟,黄玉坤,马嫄,张广峰. 论“食品安全学”课程思政中的情感、知识和能力目标设计. 食品工业. 2024(05): 230-233 .
![]() |