LIU Le, ZOU Kaixiang, SHAO Kaisheng, et al. The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari[J]. Science and Technology of Food Industry, 2022, 43(15): 139−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110013.
Citation: LIU Le, ZOU Kaixiang, SHAO Kaisheng, et al. The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari[J]. Science and Technology of Food Industry, 2022, 43(15): 139−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110013.

The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari

More Information
  • Received Date: November 02, 2021
  • Available Online: June 02, 2022
  • In order to test the effect of galactooligosaccharide (GOS) on the characterization and antibacterial activity of milk fermented by Lactobacillus plantarum, the main factors affecting the fermented milk were investigated and the most suitable fermentation conditions for improving the characterization of fermented milk were obtained with response surface analysis. The enterotoxigenic Bacillus cereus HN001 was used as an indicator to study the effect of GOS addition on the antibacterial activity of L. plantarum ZDY2013 fermented milk. The results showed that L. plantarum could use GOS for metabolism in vitro and inhibit the growth of B. cereus effectively. The proper addition of GOS in milk could increase the number of viable bacteria, reduce the pH and enhance the water holding capacity of L. plantarum fermented milk. The result from response surface analysis was found that the best fermentation conditions for fermented milk were 2.0% inoculums of L. plantarum, 1.0% GOS, fermented at 42 ℃ for 24 h. Additionally, GOS addition in fermented milk could effectively control the concentration of enterotoxigenic B. cereus HN001 to below 106 CFU/mL. The results of this study provide the foundation for the application of GOS and L. plantarum ZDY2013 in fermented milk.
  • [1]
    MARKOWIAK P, SLIZEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients,2017,9(9):1−30.
    [2]
    曹振辉, 刘永仕, 潘洪彬, 等. 乳酸菌的益生功能及作用机制研究进展[J]. 食品工业科技,2015,36(24):366−377. [CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry,2015,36(24):366−377.

    CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry, 2015, 36(24): 366-377.
    [3]
    OH N S, JOUNG J Y, LEE J Y, et al. A synbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract prevents hepatic toxicity induced by colorectal cancer in mice[J]. Journal of Dairy Science,2020,103(4):2947−2955. doi: 10.3168/jds.2019-17411
    [4]
    SAVAIANO D A, HUTKINS R W. Yogurt, cultured fermented milk, and health: A systematic review[J]. Nutrition Reviews,2021,79(5):599−614. doi: 10.1093/nutrit/nuaa013
    [5]
    OAK S J, JHA R. The effects of probiotics in lactose intolerance: A systematic review[J]. Critical Reviews in Food Science Nutrition,2019,59(11):1675−1683. doi: 10.1080/10408398.2018.1425977
    [6]
    ZHONG Z, HU R, ZHAO J, et al. Acetate kinase and peptidases are associated with the proteolytic activity of Lactobacillus helveticus isolated from fermented food[J]. Food Microbiology,2021,94:103651.
    [7]
    张彦位, 路江浩, 鄢梦洁, 等. 益生菌对微生态系统的改善作用及其应用研究进展[J]. 食品工业科技,2021,42(4):369−379. [ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry,2021,42(4):369−379.

    ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry, 2021, 42(4): 369-379.
    [8]
    HUANG H R, TAO X, WAN C X, et al. In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice[J]. Journal of Dairy Science,2015,98(9):5850−5861. doi: 10.3168/jds.2014-9153
    [9]
    WANG Y Y, GUO Y L, CHEN H, et al. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress[J]. Canadian Journal of Microbiology,2018,64(5):327−337. doi: 10.1139/cjm-2017-0716
    [10]
    ZHANG Z H, TAO X, SHAH N P, et al. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens[J]. Journal Dairy of Science,2016,99(4):2666−2674. doi: 10.3168/jds.2015-10587
    [11]
    ZHANG Z H, JIN M L, WANG K M, et al. Short-term intake of Lactiplantibacillus plantarum ZDY2013 fermented milk promotes homoeostasis of gut microbiota under enterotoxigenic Bacillus cereus challenge[J]. Food & Function,2021,12(11):5118−5129.
    [12]
    SONNENBURG E D, SONNENBURG J L. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates[J]. Cell Metabolism,2014,20(5):779−786. doi: 10.1016/j.cmet.2014.07.003
    [13]
    GOPAL P K, SULLIVAN P A, SMART J B. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20[J]. International Dairy Journal,2001,11(1):19−25.
    [14]
    薛雅莺, 袁卫涛, 杨海军. 低聚半乳糖的特性及应用前景[J]. 发酵科技通讯,2011,40(3):50−52. [XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology,2011,40(3):50−52. doi: 10.3969/j.issn.1674-2214.2011.03.020

    XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology, 2011, 40(3): 50-52. doi: 10.3969/j.issn.1674-2214.2011.03.020
    [15]
    MA C C, WASTI S, HUANG S, et al. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide[J]. Gut Microbes,2020,12(1):1785252. doi: 10.1080/19490976.2020.1785252
    [16]
    孙思睿, 张晟, 孟祥晨. 低聚半乳糖对植物乳杆菌生长及部分代谢的影响[J]. 食品工业科技,2017,38(17):95−98. [SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry,2017,38(17):95−98.

    SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2017, 38(17): 95-98.
    [17]
    AZAGRA B I, MASSOT C M, KNIPPING K, et al. Supplementation with 2'-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats[J]. Front Cell Infect Microbiol,2018,8:372. doi: 10.3389/fcimb.2018.00372
    [18]
    SUN J W, LIANG W X, YANG X F, et al. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b[J]. Life Sciences,2019,231:116589.
    [19]
    HASLE G, RAASTAD R, BJUNE G, et al. Can a galacto-oligosaccharide reduce the risk of traveller's diarrhoea? A placebo-controlled, randomized, double-blind study[J]. Journal of Travel Medicine,2017,24(5):1−9.
    [20]
    KWON J I, PARK Y, NOH D O, et al. Complex-oligosaccharide composed of galacto-oligosaccharide and lactulose ameliorates loperamide-induced constipation in rats[J]. Food Science and Biotechnology,2018,27(3):781−788. doi: 10.1007/s10068-017-0300-2
    [21]
    KIM M G, JO K Y, CHANG Y B, et al. Changes in the gut microbiome after galacto-oligosaccharide administration in loperamide-induced constipation[J]. Journal of Personalized Medicine,2020,10(4):1−15.
    [22]
    CHU H Q, TAO X, SUN Z G, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway[J]. Life Sciences,2020,242:117220.
    [23]
    SEIJO M, BONANNO M S, VENICA C I, et al. A yoghurt containing galactooligosaccharides and having low-lactose level improves calcium absorption and retention during growth: Experimental study[J]. International Journal of Food Science & Technology,2021,57(1):48−56.
    [24]
    张娜, 占英, 孟迎平, 等. 功能低聚糖对植物乳杆菌ZDY2013发酵乳发酵特性及冷藏效果的影响[J]. 现代食品科技,2021,37(11):34−42. [ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 fermented milk[J]. Modern Food Science and Technology,2021,37(11):34−42.

    ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 Fermented milk[J]. Modern Food Science and Technology, 2021, 37(11): 34-42.
    [25]
    PENG L, ZHAO K, CHEN S, et al. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013[J]. Archives of Microbiology,2021,203:2795−2807. doi: 10.1007/s00203-021-02240-7
    [26]
    张志鸿, 许恒毅, 魏华. 基于PCR方法检测蜡样芽孢杆菌的研究进展[J]. 食品工业科技,2013,34(22):335−342. [ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry,2013,34(22):335−342.

    ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry, 2013, 34(22): 335-342.
    [27]
    蔡淼, 郝晓娜, 罗天淇, 等. 植物乳杆菌YW11胞外多糖对酸乳加工特性的影响[J]. 食品科学,2021,42(14):39−45. [CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science,2021,42(14):39−45. doi: 10.7506/spkx1002-6630-20200511-115

    CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science, 2021, 42(14): 39-45. doi: 10.7506/spkx1002-6630-20200511-115
    [28]
    WANG H, WANG C, WANG M, et al. Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture kefir mild 01[J]. Journal of Food Science,2017,82(11):2650−2658. doi: 10.1111/1750-3841.13935
    [29]
    ARNESEN L P, FAGERLUND A, GRANUM P E. From soil to gut: Bacillus cereus and its food poisoning toxins[J]. FEMS Microbiology Reviews,2008,32(4):579−606. doi: 10.1111/j.1574-6976.2008.00112.x
  • Related Articles

    [1]CAO Wanxue, LI Jiao, TAO Qiang, FAN Xuanxuan, LU Jiting, CHEN Naifu, CHEN Naidong. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060247
    [2]WANG Yanan, QIAN Xinyi, YONG Yidan, WU Mengmeng, LI Yihao, CHEN Yuhang, NI Zaizhong, LI Lulu, CHEN Anhui, ZHANG Peng, GENG Ying, SHAO Ying. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070386
    [3]HAN Pengfei, ZHU Xuan, YANG Min, HUANG Guiqiang. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130-136. DOI: 10.13386/j.issn1002-0306.2022090117
    [4]WANG Mingrui, DENG Yongping, SONG Qingyan, CHEN Yuebin, LIU Xiaolan. Optimization of Polysaccharides and Fibrinolytic Enzyme Co-production from Cordyceps militaris through Solid State Fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71-76. DOI: 10.13386/j.issn1002-0306.2020040341
    [5]WU Tong, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei, HUA Chun, CHI Yue-lan. Study on the preparation of Cordyceps militaris polysaccharide/Nano-Selenium complex[J]. Science and Technology of Food Industry, 2017, (05): 49-53. DOI: 10.13386/j.issn1002-0306.2017.05.001
    [6]CHEN Xiao-li, WU Guang-hong, HUANG Zhuo-lie. Structural characterization of a polysaccharide from cultured Cordyceps militaris with antioxidant activity[J]. Science and Technology of Food Industry, 2016, (06): 155-159. DOI: 10.13386/j.issn1002-0306.2016.06.023
    [7]YANG Wen- ya, LI Chang- zheng, ZHANG Hai- hui, ZHANG Di, CAI Mei- hong, WANG Jia, DUAN Yu- qing. Study on the optimization for the extraction and antioxidant activity of polysaccharide from cordyceps militaris by subcritical water[J]. Science and Technology of Food Industry, 2016, (05): 252-257. DOI: 10.13386/j.issn1002-0306.2016.05.041
    [8]WANG Xue, CHI Yue-lan, HUA Chun, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei. Effect of different extraction methods on the feature of polysaccharide in Cordyceps Militaris[J]. Science and Technology of Food Industry, 2015, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2015.09.001
    [9]Study on the anti-mutagenic effect of Cordyceps militaris polysaccharide[J]. Science and Technology of Food Industry, 2013, (11): 350-352. DOI: 10.13386/j.issn1002-0306.2013.11.006
    [10]Optimization of nutritional conditions for promotion of polysaccharide produced by Cordyceps gunnii in submerged culture[J]. Science and Technology of Food Industry, 2013, (10): 225-229. DOI: 10.13386/j.issn1002-0306.2013.10.015
  • Cited by

    Periodical cited type(3)

    1. 魏帅,唐崟珺,马嘉亿,刘颖琳,刘振洋,刘书成. 超临界CO_2萃取联合超声处理对凡纳滨对虾虾头油脂提取效果的影响. 保鲜与加工. 2024(01): 15-19 .
    2. 陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用. 微生物学报. 2024(08): 2768-2783 .
    3. 徐文思,张梦媛,李柏花,杨祺福,危纳强,杨品红,周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展. 食品工业科技. 2021(17): 432-438 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (224) PDF downloads (20) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return