WANG Yanan, QIAN Xinyi, YONG Yidan, et al. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry, 2025, 46(9): 31−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070386.
Citation: WANG Yanan, QIAN Xinyi, YONG Yidan, et al. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry, 2025, 46(9): 31−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070386.

Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris

More Information
  • Received Date: July 28, 2024
  • Available Online: February 28, 2025
  • In the present study, the fruiting bodies of Cordyceps militaris were used as raw materials to extract the crude polysaccharides Y-1, Y-2, Y-3, Y-4, Y-5, Y-6 and Y-7, which fractional precipitation using the ethanol with different volume fractions of 30%, 40%, 50%, 60%, 70%, 80% and 90%. The graded crude polysaccharide with the strongest antioxidant activity was selected to separate and purify the homogeneous polysaccharide with the strongest by DEAE-52 cellulose ion exchange chromatography and Sephadex G-150 gel chromatography. High performance gel chromatography, gas chromatography and infrared spectroscopy were used to identify the molecular weight, monosaccharide composition and functional groups of the homogeneous polysaccharide, and evaluate its antioxidant activity in vivo. The results showed that the graded polysaccharide Y-4 with the strongest antioxidant activity was isolated and purified by DEAE-52 cellulose ion exchange chromatography and Sephadex G-150 gel chromatography, and obtained a homogeneous polysaccharide STP-4 with the strongest antioxidant activity. STP-4 was an α-type configuration oligosaccharide composed of arabinose, mannose, and glucose, with a molecular weight of approximately 1434 Da. It had the functional groups such as O-H, C-H, COOH, C=O, and C-O-C. In addition, STP-4 could significantly reduce the malondialdehyde (MDA) content (P<0.01), increase the superoxide dismutase (SOD) activity (P<0.5), and the glutathione peroxidase (GSH-Px) activity (P<0.01) in the serum of mice with oxidative damage. This study provides a theoretical basis for the in-depth development and antioxidant activity research of Cordyceps militaris resources.
  • [1]
    周思静, 刘桂君, 尚宏忠, 等. 蛹虫草人工培养技术研究进展[J]. 江苏农业科学,2014,42(7):13−17. [ZHOU Sijing, LIU Guijun, SHANG Hongzhong, et al. Research progress on artificial culture technology of Cordyceps militaris[J]. Jiangsu Agricultural Sciences,2014,42(7):13−17.] doi: 10.3969/j.issn.1002-1302.2014.07.004

    ZHOU Sijing, LIU Guijun, SHANG Hongzhong, et al. Research progress on artificial culture technology of Cordyceps militaris[J]. Jiangsu Agricultural Sciences, 2014, 42(7): 13−17. doi: 10.3969/j.issn.1002-1302.2014.07.004
    [2]
    李佩瑶, 高睿晗, 兰春阳, 等. 蛹虫草多糖免疫调节机制的研究进展[J]. 中国免疫学杂志,2023,39(6):1342−1345. [LI Peiyao, GAO Ruihan, LAN Chunyang, et al. Research progress on immune regulation mechanism of Cordyceps militaris polysaccharide[J]. Chinese Journal of Immunology,2023,39(6):1342−1345.] doi: 10.3969/j.issn.1000-484X.2023.06.047

    LI Peiyao, GAO Ruihan, LAN Chunyang, et al. Research progress on immune regulation mechanism of Cordyceps militaris polysaccharide[J]. Chinese Journal of Immunology, 2023, 39(6): 1342−1345. doi: 10.3969/j.issn.1000-484X.2023.06.047
    [3]
    KONTOGIANNATOS D, KOUTROTSIOS G, XEKALAKI S, et al. Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris—A review of various aspects and recent trends towards the exploitation of a valuable fungus[J]. Journal of Fungi,2021,7(11):986. doi: 10.3390/jof7110986
    [4]
    郑世仲, 林钦, 姜春玲, 等. 蛹虫草液体发酵培育子实体及其营养成分、色素稳定性分析[J]. 微生物学通报,2024,51(10):4075−4088. [ZHENG Shizhong, LIN Qin, JIANG Chunling, et al. Cordyceps militaris fruiting bodies:Cultivation by liquid fermentation, nutrient composition, and pigment stability[J]. Microbiology China,2024,51(10):4075−4088.]

    ZHENG Shizhong, LIN Qin, JIANG Chunling, et al. Cordyceps militaris fruiting bodies: Cultivation by liquid fermentation, nutrient composition, and pigment stability[J]. Microbiology China, 2024, 51(10): 4075−4088.
    [5]
    NI Z Z, LI J T, QIAN X Y, et al. Optimization of the conditions for microwave-assisted hot-water extraction of polysaccharides from Cordyceps militaris and analysis of their hypoglycemic activity[J]. Journal of Food Measurement and Characterization,2024,18:5766−5778. doi: 10.1007/s11694-024-02607-6
    [6]
    吴艳钦, 张锶莹, 翁馨, 等. 响应面法优化蛹虫草猴头菇银耳复合蛋糕加工工艺[J]. 宁德师范学院学报(自然科学版),2024,36(2):174−180. [WU Yanqin, ZHANG Siying, WENG Xin, et al. Study on formula optimization of Cordyceps militaris, Hericium erinaceus and Tremella fuciformis composite cake by response surface methodology[J]. Journal of Ningde Normal University (Natural Science),2024,36(2):174−180.]

    WU Yanqin, ZHANG Siying, WENG Xin, et al. Study on formula optimization of Cordyceps militaris, Hericium erinaceus and Tremella fuciformis composite cake by response surface methodology[J]. Journal of Ningde Normal University (Natural Science), 2024, 36(2): 174−180.
    [7]
    李春颖, 韩笑. 蛹虫草猪肉脯的工艺研究[J]. 赤峰学院学报(自然科学版),2023,39(9):47−51. [LI Chunying, HAN Xiao. Research on the processing technology of Cordyceps militaris pork jerky[J]. Journal of Chifeng University (Natural Science Edition),2023,39(9):47−51.] doi: 10.3969/j.issn.1673-260X.2023.09.013

    LI Chunying, HAN Xiao. Research on the processing technology of Cordyceps militaris pork jerky[J]. Journal of Chifeng University (Natural Science Edition), 2023, 39(9): 47−51. doi: 10.3969/j.issn.1673-260X.2023.09.013
    [8]
    徐莉娜, 郭明慧, 李艳婷, 等. 蛹虫草发酵菌茶菌株筛选及制备[J]. 食用菌,2023,45(3):55−57. [XU Lina, GUO Minghui, LI Yanting, et al. Screening and preparation of Cordyceps militaris fermented tea strains[J]. Edible Fungi,2023,45(3):55−57.] doi: 10.3969/j.issn.1000-8357.2023.03.019

    XU Lina, GUO Minghui, LI Yanting, et al. Screening and preparation of Cordyceps militaris fermented tea strains[J]. Edible Fungi, 2023, 45(3): 55−57. doi: 10.3969/j.issn.1000-8357.2023.03.019
    [9]
    刘方. 虫草素复合米的制备工艺及性质研究[D]. 武汉:武汉轻工大学, 2015. [LIU Fang. Preparation and properties of restructuring rice with cordycepin composite rice[D]. Wuhan:Wuhan Polytechnic University, 2015.]

    LIU Fang. Preparation and properties of restructuring rice with cordycepin composite rice[D]. Wuhan: Wuhan Polytechnic University, 2015.
    [10]
    胡龙. 蛹虫草固体发酵优化及其在低GI产品开发中应用[D]. 武汉:武汉轻工大学, 2021. [HU Long. Optimization of solid fermentation of Cordyceps militaris and its application in the development of low GI products[D]. Wuhan:Wuhan Polytechnic University, 2021.]

    HU Long. Optimization of solid fermentation of Cordyceps militaris and its application in the development of low GI products[D]. Wuhan: Wuhan Polytechnic University, 2021.
    [11]
    曾里, 赵志君, 褚少军, 等. 灵芝虫草保健酒的研发[J]. 酿酒科技,2007,12:88−90. [ZENG Li, ZHAO Zhijun, CHU Shaojun, et al. Development of Ganoderma lucidum-Cordyceps health wine[J]. Liquor-Making Science & Technology,2007,12:88−90.] doi: 10.3969/j.issn.1001-9286.2007.04.024

    ZENG Li, ZHAO Zhijun, CHU Shaojun, et al. Development of Ganoderma lucidum-Cordyceps health wine[J]. Liquor-Making Science & Technology, 2007, 12: 88−90. doi: 10.3969/j.issn.1001-9286.2007.04.024
    [12]
    李海洲, 孙新涛, 孙自余, 等. 蛹虫草菌丝体深层发酵培养加工虫草酸奶研究[J]. 中国食用菌,2014,33(4):55−56. [LI Haizhou, SUN Xintao, SUN Ziyu, et al. Study on Cordyceps yogurt processing of Cordycep smilitaris mycelium by liquid fermentation[J]. Edible Fungi of China,2014,33(4):55−56.]

    LI Haizhou, SUN Xintao, SUN Ziyu, et al. Study on Cordyceps yogurt processing of Cordycep smilitaris mycelium by liquid fermentation[J]. Edible Fungi of China, 2014, 33(4): 55−56.
    [13]
    彭凯. 蛹虫草香醋生产工艺研究[J]. 中国调味品,2017,42(11):83−84. [PENG Kai. Study on production technology of Cordyceps militaris aromatic vinegar[J]. China Condiment,2017,42(11):83−84.] doi: 10.3969/j.issn.1000-9973.2017.11.017

    PENG Kai. Study on production technology of Cordyceps militaris aromatic vinegar[J]. China Condiment, 2017, 42(11): 83−84. doi: 10.3969/j.issn.1000-9973.2017.11.017
    [14]
    杨爽, 逯城宇, 杨雪薇, 等. 蛹虫草多糖降糖活性的研究[J]. 时珍国医国药,2013,24(9):2134−2136. [YANG Shuang, LU Chengyu, YANG Xuewei, et al. Study on the hypoglycemic activity of polysaccharides isolated from Cordyceps militaris[J]. Lishizhen Medicine and Materia Medica Research,2013,24(9):2134−2136.] doi: 10.3969/j.issn.1008-0805.2013.09.031

    YANG Shuang, LU Chengyu, YANG Xuewei, et al. Study on the hypoglycemic activity of polysaccharides isolated from Cordyceps militaris[J]. Lishizhen Medicine and Materia Medica Research, 2013, 24(9): 2134−2136. doi: 10.3969/j.issn.1008-0805.2013.09.031
    [15]
    JING Y S, CUI X L, CHEN Z Y, et al. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris[J]. Carbohydrate Polymers,2014,102:288−296. doi: 10.1016/j.carbpol.2013.11.061
    [16]
    ZHANG J X, WEN C T, DUAN Y Q, et al. Advance in Cordyceps militaris (Linn) Link polysaccharides:Isolation, structure, and bioactivities:A review[J]. International Journal of Biological Macromolecules,2019,132:906−914. doi: 10.1016/j.ijbiomac.2019.04.020
    [17]
    HUANG S S, ZOU Y TANG H B, et al. Cordyceps militaris polysaccharides modulate gut microbiota and improve metabolic disorders in mice with diet-induced obesity[J]. Journal of the Science of Food and Agriculture,2023,103(4):1885−1894. doi: 10.1002/jsfa.12409
    [18]
    秦令祥, 丁昱婵, 赵俊芳, 等. 蛹虫草多糖提取工艺优化及其抗菌、抗氧化活性[J]. 食品研究与开发,2023,44(11):159−165. [QIN Lingxiang, DING Yuchan, ZHAO Junfang, et al. Optimization of extraction process of Cordyceps militaris polysaccharides and its antibacterial and antioxidant activities[J]. Food Research and Development,2023,44(11):159−165.] doi: 10.12161/j.issn.1005-6521.2023.11.023

    QIN Lingxiang, DING Yuchan, ZHAO Junfang, et al. Optimization of extraction process of Cordyceps militaris polysaccharides and its antibacterial and antioxidant activities[J]. Food Research and Development, 2023, 44(11): 159−165. doi: 10.12161/j.issn.1005-6521.2023.11.023
    [19]
    韩瑜玮, 刘洋洋, 陈伟. 蛹虫草多糖酸奶对酒精性肝损伤昆明种小鼠的协同保护作用[J]. 食品科学,2020,41(1):209−214. [HAN Yuwei, LIU Yangyang, CHEN Wei. Synergistic protective effects of Cordyceps militaris polysaccharide supplemented yogurt on alcoholic liver injury in Kunming mice[J]. Food Science,2020,41(1):209−214.] doi: 10.7506/spkx1002-6630-20181120-228

    HAN Yuwei, LIU Yangyang, CHEN Wei. Synergistic protective effects of Cordyceps militaris polysaccharide supplemented yogurt on alcoholic liver injury in Kunming mice[J]. Food Science, 2020, 41(1): 209−214. doi: 10.7506/spkx1002-6630-20181120-228
    [20]
    梁小飞, 张芳, 姜胤秀, 等. 枸杞多糖构-效关系研究进展与展望[J]. 中国中药杂志, 2023, 48(9):2387-2395. [Progress and prospects on the structure-activity relationship of Lycium barbarum polysaccharides[J]. China Journal of Chinese Materia Medica, 2023, 48(9):2387-2395.]

    Progress and prospects on the structure-activity relationship of Lycium barbarum polysaccharides[J]. China Journal of Chinese Materia Medica, 2023, 48(9): 2387-2395.
    [21]
    SHI Y, HE X H, BAI B K, et al. Structural characterization and antinociceptive activity of polysaccharides from Anoectochilus elatus[J]. International Journal of Biological Macromolecules,2023,233:123542. doi: 10.1016/j.ijbiomac.2023.123542
    [22]
    BAO X W, WANG W, SONG S Q, et al. Characterization and antioxidant activities of polysaccharides from Hippophae rhamnoides L[J]. Journal of Food Measurement and Characterization,2024,18(1):688−697. doi: 10.1007/s11694-023-02193-z
    [23]
    SHEN C, WANG T, GUO F, et al. Structural characterization and intestinal protection activity of polysaccharides from sea buckthorn (Hippophae rhamnoides L.) berries[J]. Carbohydr Polym,2021,274:118648. doi: 10.1016/j.carbpol.2021.118648
    [24]
    蒋玉珍, 袁晚晴, 杨淑婷, 等. 响应面优化蛹虫草粗多糖提取工艺及抗氧化能力研究[J]. 食品科技,2023,48(7):149−156. [JIANG Yuzhen, YUAN Wanqing, YANG Shuting, et al. Optimization of extraction process and antioxidant capacity of crude polysaccharides from Cordyceps militaris by response surface methodology[J]. Food Science and Technology,2023,48(7):149−156.]

    JIANG Yuzhen, YUAN Wanqing, YANG Shuting, et al. Optimization of extraction process and antioxidant capacity of crude polysaccharides from Cordyceps militaris by response surface methodology[J]. Food Science and Technology, 2023, 48(7): 149−156.
    [25]
    于士军, 包佳源, 樊美珍. 人工蝉花孢梗束粗多糖的提取工艺和活性[J]. 菌物研究,2014,12(2):100−106. [YU Shijun, BAO Jiayuan, FAN Meizhen. Extraction technology and biological activities of crude polysaccharide from synnemata of Cordyceps cicadae culture[J]. Journal of Fungal Research,2014,12(2):100−106.]

    YU Shijun, BAO Jiayuan, FAN Meizhen. Extraction technology and biological activities of crude polysaccharide from synnemata of Cordyceps cicadae culture[J]. Journal of Fungal Research, 2014, 12(2): 100−106.
    [26]
    ZHANG X F, LIANG Z H, WATERHOUSE G I N, et al. Structural characteristics, anticoagulant and antithrombotic mechanism of a novel polysaccharide from rosa Chinensis Flos[J]. Food Science and Human Wellness,2023,12(2):407−415. doi: 10.1016/j.fshw.2022.07.042
    [27]
    JANG H L, LICEAGA A M, YOON K Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates[J]. Journal of Functional Foods,2016,20:433−442. doi: 10.1016/j.jff.2015.11.020
    [28]
    席丽琴, 杨君娜, 许随根, 等. 西式发酵火腿粗肽的制备及抗氧化活性和氨基酸组成分析[J]. 肉类研究,2022,36(1):1−6. [XI Liqin, YANG Junna, XU Suigen, et al. Preparation, antioxidant activity and amino acid composition analysis of crude peptides from western-style fermented ham[J]. Meat Research,2022,36(1):1−6.]

    XI Liqin, YANG Junna, XU Suigen, et al. Preparation, antioxidant activity and amino acid composition analysis of crude peptides from western-style fermented ham[J]. Meat Research, 2022, 36(1): 1−6.
    [29]
    OYAIZU M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography[J]. Journal of the Japanese Society for Food Science & Technology,2010,35(11):771−775.
    [30]
    PENG Y, ZHU X C, YANG G Y, et al. Ultrasonic extraction of Moringa oleifera seeds polysaccharides:Optimization, purification, and anti-inflammatory activities[J]. International Journal of Biological Macromolecules,2024,258:128833. doi: 10.1016/j.ijbiomac.2023.128833
    [31]
    XIE C Y, GAO W, LI X, et al. Garlic (Allium sativum L.) polysaccharide ameliorates type 2 diabetes mellitus (T2DM) via the regulation of hepatic glycogen metabolism[J]. NFS Journal,2023,31:19−27. doi: 10.1016/j.nfs.2023.02.004
    [32]
    白娣斯, 张静. 气相色谱分析多糖衍生化方法的研究与比较[J]. 食品工业科技,2011,32(2):322−324,421. [BAI Disi, ZHANG Jing. Study and comparison of two derivatization methods of polysaccharides by GC[J]. Science and Technology of Food Industry,2011,32(2):322−324,421.]

    BAI Disi, ZHANG Jing. Study and comparison of two derivatization methods of polysaccharides by GC[J]. Science and Technology of Food Industry, 2011, 32(2): 322−324,421.
    [33]
    SUN L, JIANG J, JING T, et al. A polysaccharide NAP-3 from Naematelia aurantialba:Structural characterization and adjunctive hypoglycemic activity[J]. Carbohydrate Polymers,2023,318:121124. doi: 10.1016/j.carbpol.2023.121124
    [34]
    LI R S, TAO A E, YANG R M, et al. Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll. et Hemsl[J]. Biomedicine & Pharmacotherapy,2020,131:110687.
    [35]
    辛炫英, 谢庭岩, 付兴培, 等. 黄线狭鳕鱼皮胶原蛋白肽对D-半乳糖致衰老小鼠改善作用[J]. 食品研究与开发,2023,44(21):39−45,166. [XIN Xuanying, XIE Tingyan, FU Xingpei, et al. Effect of theragra chalcogramma skin collagen peptide on D-Galactose-induced aging mice[J]. Food Research and Development,2023,44(21):39−45,166.]

    XIN Xuanying, XIE Tingyan, FU Xingpei, et al. Effect of theragra chalcogramma skin collagen peptide on D-Galactose-induced aging mice[J]. Food Research and Development, 2023, 44(21): 39−45,166.
    [36]
    隋昕怡, 逄梦玉, 刘丹, 等. 超声辅助低共熔溶剂法提取蛹虫草多糖工艺优化及其抗氧化活性研究[J]. 粮食与油脂,2024,37(9):92−96,113. [SUI Xinyi, PANG Mengyu, LIU Dan, et al. Optimization of extraction process for polysaccharides from Cordyceps militaris by ultrasonic-assisted deep eutectic solvent and study on its antioxidant activity[J]. Cereals& Oils,2024,37(9):92−96,113.]

    SUI Xinyi, PANG Mengyu, LIU Dan, et al. Optimization of extraction process for polysaccharides from Cordyceps militaris by ultrasonic-assisted deep eutectic solvent and study on its antioxidant activity[J]. Cereals& Oils, 2024, 37(9): 92−96,113.
    [37]
    何宝林. 蛹虫草多糖的分离纯化、结构解析及其免疫调节活性研究[D]. 广州:华南农业大学, 2019. [HE Baolin. Isolation, purification, structure characterization and immunoregulatory effect of polysaccharide from Cordyceps militaris[D]. Guangzhou:South China Agricultural University, 2019.]

    HE Baolin. Isolation, purification, structure characterization and immunoregulatory effect of polysaccharide from Cordyceps militaris[D]. Guangzhou: South China Agricultural University, 2019.
    [38]
    XIU W Y, WANG X, NA Z G, et al. Ultrasound-assisted hydrogen peroxide–ascorbic acid method to degrade sweet corncob polysaccharides can help treat type 2 diabetes via multiple pathways in vivo[J]. Ultrasonics Sonochemistry,2023,101:106683. doi: 10.1016/j.ultsonch.2023.106683
    [39]
    LIU Y, RAN L M, WANG Y H, et al. Basic characterization, antioxidant and immunomodulatory activities of polysaccharides from sea buckthorn leaves[J]. Fitoterapia,2023,169:105592. doi: 10.1016/j.fitote.2023.105592
    [40]
    江琦, 娄在祥, 王正齐, 等. 蛹虫草虫草多糖的分离纯化、分子构象分析及抗氧化活性研究[J]. 食品与发酵工业,2019,45(1):22−28. [JIANG Qi, LOU Zaixiang, WANG Zhengqi, et al. Isolation and purification, structure and molecular conformation and antioxidant activities of polysaccharides from Cordyceps militaris[J]. Food and Fermentation Industries,2019,45(1):22−28.]

    JIANG Qi, LOU Zaixiang, WANG Zhengqi, et al. Isolation and purification, structure and molecular conformation and antioxidant activities of polysaccharides from Cordyceps militaris[J]. Food and Fermentation Industries, 2019, 45(1): 22−28.
    [41]
    HUO J Y, WU Z Y, ZHAO H, et al. Structure-activity relationship of antioxidant polysaccharides from Huangshui based on the HPLC fingerprint combined with chemometrics methods[J]. LWT,2022,159:113201. doi: 10.1016/j.lwt.2022.113201
    [42]
    WANG N, LI Q Y, LIU M L, et al. Structural characterization of alkali-extracted jujube polysaccharides and their effects on the fecal microbiota in vitro[J]. LWT,2023,184:115087. doi: 10.1016/j.lwt.2023.115087
    [43]
    HUANG X H, YANG Q, CHANG S L, et al. Potential osteoporosis-blocker Sparassis crispa polysaccharide:Isolation, purification and structure elucidation[J]. International Journal of Biological Macromolecules,2024,261:129879. doi: 10.1016/j.ijbiomac.2024.129879
    [44]
    WANG H S, CHEN J R, REN P F, et al. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J]. Ultrasonics Sonochemistry,2021,70:105355. doi: 10.1016/j.ultsonch.2020.105355
    [45]
    CHEN H Y, ZENG J S, WANG B, et al. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods[J]. Carbohydrate Polymers,2021,266:118149. doi: 10.1016/j.carbpol.2021.118149
    [46]
    SFAR M, SOUID G, ALMINDEREJ F M, et al. Structural characterization of polysaccharides from Coriandrum sativum seeds:hepatoprotective effect against cadmium toxicity in vivo[J]. Antioxidants,2023,12(2):455. doi: 10.3390/antiox12020455
    [47]
    ALZORQI I, SUDHEER S, LU T J, et al. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity[J]. Ultrasonics Sonochemistry,2017,35:531−540. doi: 10.1016/j.ultsonch.2016.04.017
    [48]
    QIU J J, SHI M L, LI S Q, et al. Artificial neural network model and response surface methodology-based optimization of Atractylodis Macrocephalae Rhizoma polysaccharide extraction, kinetic modelling and structural characterization[J]. Ultrasonics Sonochemistry,2023,95:106408. doi: 10.1016/j.ultsonch.2023.106408
    [49]
    雷燕妮, 张小斌, 陈书存. 蛹虫草多糖的抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版),2022,50(11):26−34. [LEI Yanni, ZHANG Xiaobin, CHEN Shucun. Antioxidant activity of polysaccharides from Cordyceps militaris[J]. Journal of Northwest A& F University (Nat Sci Ed ),2022,50(11):26−34.]

    LEI Yanni, ZHANG Xiaobin, CHEN Shucun. Antioxidant activity of polysaccharides from Cordyceps militaris[J]. Journal of Northwest A& F University (Nat Sci Ed ), 2022, 50(11): 26−34.
    [50]
    CHEN N, JIANG T Y, XU J X, et al. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated[J]. International Journal of Biological Macromolecules,2024,270:132391. doi: 10.1016/j.ijbiomac.2024.132391
    [51]
    ZHAO Y, HAN C, WU Y Y D, et al. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae[J]. Science of The Total Environment,2024,931:172567. doi: 10.1016/j.scitotenv.2024.172567
    [52]
    ZHANG C W, ZOU Y F, ZOU Y, et al. Ultrasonic-assisted extraction of polysaccharide from Paeoniae Radix alba:Extraction optimization, structural characterization and antioxidant mechanism in vitro[J]. International Journal of Biological Macromolecules,2024,268:131816. doi: 10.1016/j.ijbiomac.2024.131816
  • Cited by

    Periodical cited type(1)

    1. 何静,柏松,谢光杰,罗玲,黄治国,卫春会. 酿酒污水资源化应用性能及风险分析. 中国酿造. 2024(01): 113-118 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (38) PDF downloads (9) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return