HAN Pengfei, ZHU Xuan, YANG Min, et al. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130−136. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090117.
Citation: HAN Pengfei, ZHU Xuan, YANG Min, et al. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130−136. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090117.

Solid-state Fermentation of Cordyceps taii for Polysaccharide Production

More Information
  • Received Date: September 12, 2022
  • Available Online: May 17, 2023
  • Rice was used as materials for Cordyceps taii fermentation, the content of Cordyceps taii polysaccharide was increased through optimizing fermentation conditions. Single-factor and multi-factor experiments were used to optimize the solid fermentation conditions of Cordyceps taii producing polysaccharide. The results of Plackett-Burman test showed that fermentation temperature, inoculation quantity and the ratio of material to water were main affecting factors for the content of Cordyceps taii polysaccharide. Then the steepest ascent experiment and Box-Behnken experiment were conducted to obtain the optimum conditions of Cordyceps taii producing polysaccharide as follows: Fermentation temperature 25 ℃, inoculation amount 8%, the ratio of material to water (g/mL) 1:1.5, the weight of substrate 10 g and the fermentation time 5 days. The content of Cordyceps taii polysaccharide was 5.31%±0.11%, and the error was 0.93%±1.8% comparing with the theoretical value. It would provide a theoretical basis for the industrial production of Cordyceps taii polysaccharide and a theoretical reference for other Cordyceps spp. producing polysaccharide by solid fermentation.
  • [1]
    全宇, 刘永翔, 刘作易, 等. 贵州绿僵菌和戴氏绿僵菌分类地位的确证[J]. 贵州农业科学,2012,40(5):84−87. [QUAN Y, LIU Y X, LIU Z Y, et al. Identification of the taxonomic status of Metarhizium guizhouense and Metarhizium taii[J]. Guizhou Agricultural Sciences,2012,40(5):84−87. doi: 10.3969/j.issn.1001-3601.2012.05.025

    QUAN Y, LIU Y X, LIU Z Y, et al. Identification of the taxonomic status of Metarhizium guizhouense and Metarhizium taii[J]. Guizhou Agricultural Sciences, 2012, 40(5): 84–87. doi: 10.3969/j.issn.1001-3601.2012.05.025
    [2]
    刘柏岑, 潘卫东, 娄华勇, 等. 戴氏虫草菌丝体抗肿瘤化学成分研究[J]. 江苏农业科学,2017,45(5):174−178. [LIU B C, FAN W D, LOU H Y, et al. Study of the anti-tumor chemical constituents of Cordyceps sinensis mycelium[J]. Jiangsu Agricultural Sciences,2017,45(5):174−178. doi: 10.15889/j.issn.1002-1302.2017.05.050

    LIU B C, FAN W D, LOU H Y, et al. Study of the anti-tumor chemical constituents of Cordyceps sinensis mycelium[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 174–178. doi: 10.15889/j.issn.1002-1302.2017.05.050
    [3]
    郭锡勇, 郭莉莉, 陈芳. 戴氏虫草与冬虫夏草化学成分的比较[J]. 中药材,1995(8):403−404. [GUO X Y, GUO L L, CHEN F. Comparison of chemical constituents between Cordyceps taii and Ophiocordyceps sinensis[J]. Journal of Chinese Medicinal Materials,1995(8):403−404.

    GUO X Y, GUO L L, CHEN F. Comparison of chemical constituents between Cordyceps taii and Ophiocordyceps sinensis[J]. Journal of Chinese Medicinal Materials, 1995(8): 403–404.
    [4]
    钟韩, 甘莉霞, 章卫民, 等. 戴氏虫草活性成分分析及其对小鼠免疫功能的影响[J]. 食用菌学报,2008(3):55−58. [ZHONG H, GAN L X, ZHANG W M, et al. Analysis of active components of Cordyceps taii and their effects on immune function in mice[J]. Acta Edulis Fungi,2008(3):55−58. doi: 10.3969/j.issn.1005-9873.2008.03.011

    ZHONG H, GAN L X, ZHANG W M, et al. Analysis of active components of Cordyceps taii and their effects on immune function in mice[J]. Acta Edulis Fungi, 2008(3): 55–58. doi: 10.3969/j.issn.1005-9873.2008.03.011
    [5]
    MOHAMMED ASA, NAVEED M, JOST N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities)[J]. Journal of Polymers and The Environ,2021,29(8):2359−2371. doi: 10.1007/s10924-021-02052-2
    [6]
    QI W, ZHOU X, WANG J, et al. Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling[J]. Carbohydrate Polymers,2020,237:116113. doi: 10.1016/j.carbpol.2020.116113
    [7]
    唐健波, 吕都, 潘牧, 等. 刺梨水溶性多糖提取工艺优化及其抗肿瘤活性评价[J]. 食品科技,2021,46(7):185−193. [TANG J B, LÜ D, FAN M, et al. Optimization of the water-soluble polysaccharide extraction from Rosa roxbunghii tratt and its antitumor activity[J]. Food Science and Technology,2021,46(7):185−193. doi: 10.13684/j.cnki.spkj.2021.07.031

    TANG J B, LÜ D, FAN M, et al. Optimization of the water-soluble polysaccharide extraction from Rosa roxbunghii tratt and its antitumor activity[J]. Food Science and Technology, 2021, 46(7): 185–193. doi: 10.13684/j.cnki.spkj.2021.07.031
    [8]
    MANOSROI A, PANYOSAK A, ROJANASAKUL Y, et al. Characteristics and anti-proliferative activity of azelaic acid and its derivatives entrapped in bilayer vesicles in cancer cell lines[J]. Journal of Drug Targeting,2007,15(5):334−41. doi: 10.1080/10611860701349315
    [9]
    LEE H H, LEE S, LEE K, et al. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis[J]. Daru:journal of Faculty of Pharmacy, Tehran University of Medical Sciences,2015,23(1):35.
    [10]
    LIU R M, ZHANG X J, LIANG G Y, et al. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models[J]. BMC Complement and Alternative Medicine,2015,15:216. doi: 10.1186/s12906-015-0762-9
    [11]
    NOURRISSON C, DUPONT D, LAVERGNE R A, et al. Species of Metarhizium anisopliae complex implicated in human infections: Retrospective sequencing study[J]. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases,2017,23(12):994−999. doi: 10.1016/j.cmi.2017.05.001
    [12]
    岑绮雯, 宋宇婧, 陈涛, 等. 蝉花多糖提取工艺优化及抗菌活性初步研究[J]. 杭州师范大学学报(自然科学版),2018,17(3):269−274. [CEN Q W, SONG Y J, CHEN T, et al. Optimization of extraction technology for polysaccharide from Cordyceps cicadae and the preliminary investigation of its antibacterial activity[J]. Journal of Hangzhou Normal University (Natural Science Edition),2018,17(3):269−274. doi: 10.3969/j.issn.1674-232X.2018.03.008

    CEN Q W, SONG Y J, CHEN T, et al. Optimization of extraction technology for polysaccharide from Cordyceps cicadae and the preliminary investigation of its antibacterial activity[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2018, 17(3): 269–274. doi: 10.3969/j.issn.1674-232X.2018.03.008
    [13]
    WANG Z, YANG Q, WANG X, et al. Antibacterial activity of xanthan-oligosaccharide against Staphylococcus aureus via targeting biofilm and cell membrane[J]. International Journal of Biological Macromolecules,2020,153:539−544. doi: 10.1016/j.ijbiomac.2020.03.044
    [14]
    ZHOU Y, YAO Q F, ZHANG T, et al. Antibacterial activity and mechanism of green tea polysaccharide conjugates against Escherichia coli[J]. Industrial Crops and Products,2020,152:112464. doi: 10.1016/j.indcrop.2020.112464
    [15]
    MENG Q, LI Y, XIAO T, et al. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus[J]. International Journal of Biological Macromolecules,2017,105(Pt 1):431−437.
    [16]
    VIVEKANANDHAN P, SWATHY K, KALAIMURUGAN D, et al. Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms[J]. PLoS One,2020,15(5):e0232172. doi: 10.1371/journal.pone.0232172
    [17]
    魏巍, 赵文文, 孔祥辉, 等. 食药用菌抗肿瘤及免疫调节作用的研究进展[J]. 食用菌,2022,44(4):1−5. [WEI W, ZHAO W W, KONG X H, et al. Research progress on anti-tumor and immune regulation effects of edible and medicinal fungi[J]. Edible Fungi,2022,44(4):1−5. doi: 10.3969/j.issn.1000-8357.2022.04.001

    WEI W, ZHAO W W, KONG X H, et al. Research progress on anti-tumor and immune regulation effects of edible and medicinal fungi[J]. Edible Fungi, 2022, 44(4): 1–5. doi: 10.3969/j.issn.1000-8357.2022.04.001
    [18]
    王金彬, 章能胜, 王小董, 等. 戴氏虫草中具清除自由基活性的物质分析[J]. 安徽农业大学学报,2010,37(2):234−237. [WANG J B, ZHANG N S, WANG X D, et al. Analysis of radical scavenging active constituent in Cordyceps taii[J]. Journal of Anhui Agricultural University,2010,37(2):234−237. doi: 10.13610/j.cnki.1672-352x.2010.02.021

    WANG J B, ZHANG N S, WANG X D, et al. Analysis of radical scavenging active constituent in Cordyceps taii[J]. Journal of Anhui Agricultural University, 2010, 37(2): 234–237. doi: 10.13610/j.cnki.1672-352x.2010.02.021
    [19]
    ZHANG X, ZHANG X, GU S, et al. Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia[J]. International Journal of Biological Macromolecules,2021,178:170−179. doi: 10.1016/j.ijbiomac.2021.02.163
    [20]
    XU L, WANG F, ZHANG Z, et al. Optimization of polysaccharide production from Cordyceps militaris by solid-state fermentation on rice and its antioxidant activities[J]. Foods,2019,8(11):590. doi: 10.3390/foods8110590
    [21]
    LIN P, YIN F, SHEN N, et al. Integrated bioinformatics analysis of the anti-atherosclerotic mechanisms of the polysaccharide CM1 from Cordyceps militaris[J]. International Journal of Biological Macromolecules,2021,193(Pt B):1274−1285.
    [22]
    李林轩, 李硕, 王晓芳, 等. 碎米综合利用技术探讨[J]. 粮食加工,2018,43(1):30−33. [LI L X, LI S, WANG X F, et al. Discussion on comprehensive utilization of broken rice[J]. Grain Processing,2018,43(1):30−33.

    LI L X, LI S, WANG X F, et al. Discussion on comprehensive utilization of broken rice[J]. Grain Processing, 2018, 43(1): 30–33.
    [23]
    FUKAGAWA N K, ZISKA L H. Rice: Importance for global nutrition[J]. Journal Nutritional Science and Vitaminology,2019,65:S2−S3. doi: 10.3177/jnsv.65.S2
    [24]
    于玲, 刘志敏, 曾海英, 等. 不同大米营养价值分析[J]. 现代食品,2020(24):183−186. [YU L, LIU Z M, ZENG H Y, et al. Analysis of nutritional value of different rice[J]. Modern Food,2020(24):183−186. doi: 10.16736/j.cnki.cn41-1434/ts.2020.24.053

    YU L, LIU Z M, ZENG H Y, et al. Analysis of nutritional value of different rice[J]. Modern Food, 2020(24): 183–186. doi: 10.16736/j.cnki.cn41-1434/ts.2020.24.053
    [25]
    张美, 杨登想, 张丛兰, 等. 不同品种大米营养成分测定及主成分分析[J]. 食品科技,2014,39(8):147−152. [ZHANG M M, YANG D X, ZHANG C L, et al. Determination of nutrient components and principal component analysis of different varieties of rice[J]. Food Science and Technology,2014,39(8):147−152. doi: 10.13684/j.cnki.spkj.2014.08.033

    ZHANG M M, YANG D X, ZHANG C L, et al. Determination of nutrient components and principal component analysis of different varieties of rice[J]. Food Science and Technology, 2014, 39(8): 147–152. doi: 10.13684/j.cnki.spkj.2014.08.033
    [26]
    朱丽娜, 刘艳芳, 张红霞, 等. 培养基和栽培方式对蛹虫草子实体活性成分的影响[J]. 菌物学报,2021,40(11):3034−3045. [ZHU L N, LIU Y F, ZHANG H X, et al. Effects of culture media and culture technique on the bioactive and nutrition components in Cordyceps militaris fruiting bodies[J]. Mycosystema,2021,40(11):3034−3045. doi: 10.13346/j.mycosystema.210080

    ZHU L N, LIU Y F, ZHANG H X, et al. Effects of culture media and culture technique on the bioactive and nutrition components in Cordyceps militaris fruiting bodies[J]. Mycosystema, 2021, 40(11): 3034–3045. doi: 10.13346/j.mycosystema.210080
    [27]
    何雯雯, 池升春, 李卫旗, 等. 培养基对蛹虫草多糖含量及其生物活性的影响[J]. 食用菌,2020,42(6):13−15,20. [HE W W, CHI S C, LI W Q, et al. Effect of solid media on content and biological activity of Cordyceps militaris polysaccharides[J]. Edible Fungi,2020,42(6):13−15,20. doi: 10.3969/j.issn.1000-8357.2020.06.004

    HE W W, CHI S C, LI W Q, et al. Effect of solid media on content and biological activity of Cordyceps militaris polysaccharides[J]. Edible Fungi, 2020, 42(6): 13–15, 20. doi: 10.3969/j.issn.1000-8357.2020.06.004
    [28]
    付铭, 冮洁, 狄文婷, 等. 大米为基质灵芝菌丝体固态发酵条件的优化[J]. 食品工业科技,2014,35(2):186−191. [FU M, GANG J, DI W T, et al. Optimization of the condition with rice of Ganoderma lucidum mycelium solid culture[J]. Science and Technology of Food Industry,2014,35(2):186−191. doi: 10.13386/j.issn1002-0306.2014.02.001

    FU M, GANG J, DI W T, et al. Optimization of the condition with rice of Ganoderma lucidum mycelium solid culture[J]. Science and Technology of Food Industry, 2014, 35(2): 186–191. doi: 10.13386/j.issn1002-0306.2014.02.001
    [29]
    陈立功, 吴家葳, 张冉, 等. 发光杆菌产几丁质酶的工艺优化[J]. 食品工业科技,2021,42(1):110−114,131. [CHEN L G, WU J W, ZHANG R, et al. Optimization of Chitinase Production by the Photobacterium sp. LG-1[J]. Science and Technology of Food Industry,2021,42(1):110−114,131. doi: 10.13386/j.issn1002-0306.2019120161

    CHEN L G, WU J W, ZHANG R, et al. Optimization of Chitinase Production by the Photobacterium sp. LG-1[J]. Science and Technology of Food Industry, 2021, 42(1): 110-114, 131. doi: 10.13386/j.issn1002-0306.2019120161
    [30]
    王迦琦, 许梦然, 高婧文, 等. 北虫草多糖提取工艺优化及其细胞氧化损伤保护作用[J]. 食品工业科技,2020,41(13):141−147. [WANG J Q, XU M R, GAO J W, et al. Optimization of extraction process of Cordyceps militaris polysaccharide and its protective effect on cellular Oxidative Damage[J]. Science and Technology of Food Industry,2020,41(13):141−147. doi: 10.13386/j.issn1002-0306.2020.13.023

    WANG J Q, XU M R, GAO J W, et al. Optimization of extraction process of Cordyceps militaris polysaccharide and its protective effect on cellular Oxidative Damage[J]. Science and Technology of Food Industry, 2020, 41(13): 141–147. doi: 10.13386/j.issn1002-0306.2020.13.023
    [31]
    谭彦琦, 郭烨, 龚秋红, 等. 北冬虫夏草固体发酵产胞外多糖条件的研究[J]. 安徽农业科学,2013,41(18):7792−7795. [TAN Y Q, GUO Y, GONG Q H, et al. Study on exopolysaccharide production with solid-fermentation conditions by Cordyceps militaris[J]. Journal of Anhui Agricultural Sciences,2013,41(18):7792−7795. doi: 10.3969/j.issn.0517-6611.2013.18.023

    TAN Y Q, GUO Y, GONG Q H, et al. Study on exopolysaccharide production with solid-fermentation conditions by Cordyceps militaris[J]. Journal of Anhui Agricultural Sciences, 2013, 41(18): 7792–7795. doi: 10.3969/j.issn.0517-6611.2013.18.023
    [32]
    王明瑞, 邓永平, 宋青燕, 等. 蛹虫草固态发酵联产多糖和纤溶酶的工艺优化[J]. 食品工业科技,2021,42(4):71−76. [WANG M R, DENG Y P, SONG Q Y, et al. Optimization of polysaccharides and fibrinolytic enzyme co-production from Cordyceps militaris through solid state fermentation[J]. Science and Technology of Food Industry,2021,42(4):71−76. doi: 10.13386/j.issn1002-0306.2020040341

    WANG M R, DENG Y P, SONG Q Y, et al. Optimization of polysaccharides and fibrinolytic enzyme co-production from Cordyceps militaris through solid state fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71–76. doi: 10.13386/j.issn1002-0306.2020040341
  • Related Articles

    [1]LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226
    [2]ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171
    [3]YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052
    [4]MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004
    [5]CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051
    [6]ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053
    [7]WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014
    [8]HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065
    [9]LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069
    [10]WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018

Catalog

    Article Metrics

    Article views (118) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return