Citation: | WANG Shengnan, FU Xiaoting, XU Jiachao, et al. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120007. |
[1] |
倪立颖, 邹娅雪, 付晓婷, 等. 利用LPS诱导胚胎期斑马鱼炎症模型研究羊栖菜多酚抗炎机制[J]. 食品工业科技,2019,40(21):279−285. [Ni Liying, Zou Yaxue, Fu Xiaoting, et al. Anti-inflammatory mechanism of phenolic compounds from Sargassum fusiforme by LPS-induced zebrafish embryo model[J]. Science and Technology of Food Industry,2019,40(21):279−285.
|
[2] |
Zhang R, Zhang X, Tang Y, et al. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review[J]. Carbohydrate Polymers,2020,228:115381. doi: 10.1016/j.carbpol.2019.115381
|
[3] |
Draget K I, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications[J]. Food Hydrocolloids,2011,25(2):251−256.
|
[4] |
Yu W, Maochen X, Qi C, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Marine Drugs,2019,3(17):183.
|
[5] |
Chen L, Chen P, Jian L, et al. Sargassum fusiforme polysaccharide SFP-F2 activates the NF-κB signaling pathway via CD14/IKK and P38 Axes in RAW264.7 Cells[J]. Marine Drugs,2018,16(8):264.
|
[6] |
Wang L, Oh J Y, Jayawardena T U, et al. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme: Short communication[J]. International Journal of Biological Macromolecules,2020,142:542−550.
|
[7] |
Cheng Y, Sibusiso L, Hou L, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules,2019:131.
|
[8] |
赵子慧, 徐曼, 刘阿梅, 等. 羊栖菜多糖通过激活JNK/Nrf2/ARE信号通路延缓小鼠衰老进程作用研究[J]. 中草药,2018,49(23):5600−5609. [Zhao Zihui, Xu Man, Liu Amei, et al. Effect of Sargassum fusiforme polysaccharides on activating JNK/Nrf2/ARE signaling pathway and slowing down aging process[J]. Chinese Traditional and Herbal Drugs,2018,49(23):5600−5609. doi: 10.7501/j.issn.0253-2670.2018.23.018
|
[9] |
Li Y, Chen B, Wu W, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. International Journal of Biological Macromolecules,2018,118:1550−1557. doi: 10.1016/j.ijbiomac.2018.06.196
|
[10] |
Wang L, Oh J Y, Yang H W, et al. Protective effect of sulfated polysaccharides from a celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced photoaging in vitro in human keratinocytes and in vivo in zebrafsh[J]. Marine Life Science & Technology,2019(1):104−111.
|
[11] |
吴娟, 欧志荣, 李昭蓉, 等. 稀酸提取羊栖菜多糖的结构及其抗氧化特性研究[J]. 福建农业学报,2019,34(7):842−851. [Wu Juan, Ou Zhirong, Zhao Mouming. Structure and antioxidant activity of polysaccharides extracted from Sargassum fusiforme[J]. Fujian Journal of Agricultural Sciences,2019,34(7):842−851.
|
[12] |
吴利敏, 夏盛隆, 申苏建,等. L02脂肪变模型中氧化应激的发生及羊栖菜多糖的干预作用[J]. 中国现代医生,2017,34(55):17−23. [Wu Limin, Xia Shenglong, Shen sujian, et al. The occurrence of oxidative stress in L02 fatty model and the intervention of Sargassum fusiform polysaccharide[J]. China Modern Doctor,2017,34(55):17−23.
|
[13] |
Wang W, Lu J, Wang C, et al. Effects of Sargassum fusiforme polysaccharides on antioxidant activities and intestinal functions in mice[J]. International Journal of Biological Macromolecules,2013,58:127−132. doi: 10.1016/j.ijbiomac.2013.03.062
|
[14] |
Wang L, Oh J Y, Kim H S, et al. Protective effect of polysaccharides from celluclast-assisted extract of Hizikiafusiforme against hydrogen peroxide-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish[J]. International Journal of Biological Macromolecules,2018,112:483−489. doi: 10.1016/j.ijbiomac.2018.01.212
|
[15] |
董乐, 董笑瀛, 王芳, 等. 羊栖菜硫酸多糖的超声辅助提取工艺优化及抗氧化活性研究[J]. 食品工业科技,2015,36(12):265−269. [Dong Le, Dong Xiaoying, Wang Fang, et al. Optimization of extraction and antioxidative activity in vitro ofsulfated polysaccharides from Sargassum fusiforme(Hary) Setch[J]. Science and Technology of Food Industry,2015,36(12):265−269.
|
[16] |
Weihua J, Wenjing Z, Jing W, et al. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species[J]. International Journal of Biological Macromolecules,2014,67:336−342. doi: 10.1016/j.ijbiomac.2014.03.031
|
[17] |
Kim E, Kang M, Lee J, et al. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose[J]. RSC Advances,2015,5:25738−25746. doi: 10.1039/C5RA00338E
|
[18] |
Lee S, Ko C, Jee Y, et al. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model[J]. Carbohydrate Polymers,2013,92(1):84−89. doi: 10.1016/j.carbpol.2012.09.066
|
[19] |
Lieschke G J, Currie P D. Animal models of human disease: Zebrafish swim into view[J]. Nature Reviews Genetics,2007,8(5):353−367. doi: 10.1038/nrg2091
|
[20] |
Schoonheim P J, Chatzopoulou A, Schaaf M J M. The zebrafish as an in vivo model system for glucocorticoid resistance[J]. Steroids,2010,75(12):918−925. doi: 10.1016/j.steroids.2010.05.010
|
[21] |
Eisen J S. Zebrafish make a big splash[J]. Cell,1996,87(6):969−977. doi: 10.1016/S0092-8674(00)81792-4
|
[22] |
Wang L, Oh J Y, Hwang J, et al. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum[J]. Antioxidants,2019,8(10):493. doi: 10.3390/antiox8100493
|
[23] |
Kang M, Cha S H, Wijesinghe W A J P, et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo[J]. Food Chemistry,2013,138(2−3):950−955. doi: 10.1016/j.foodchem.2012.11.005
|
[24] |
Ni Liying, Wang Lei, Fu Xiaoting, et al. In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica[J]. International Journal of Biological Macromolecules,2020,156:717−729. doi: 10.1016/j.ijbiomac.2020.04.012
|
[25] |
李雅静. 两品系羊栖菜(Sargassum fusiforme)的营养品质及活性成分研究[D]. 青岛: 中国海洋大学, 2018.
Li Yajing. Study on nutritional quality and active components of two strands of Sargassum fusiforme[D]. Qingdao: Ocean University of China, 2018.
|
[26] |
Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. American Chemical Society,1956,3(28):350−356.
|
[27] |
Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay[J]. Analytical Biochemistry,1969(32):314−321.
|
[28] |
Winters A L, Minchin F R. Modification of the lowry assay to measure proteins and phenols in covalently bound complexes[J]. Analytical Biochemistry,2005,346(1):43−48. doi: 10.1016/j.ab.2005.07.041
|
[29] |
Chandler S F, Dodds J H. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum[J]. Plant Cell Reports,1983,2(4):205−208. doi: 10.1007/BF00270105
|
[30] |
Tierney M S, Smyth T J, Rai D K, et al. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size[J]. Food Chemistry,2013,139(1−4):753−761. doi: 10.1016/j.foodchem.2013.01.019
|
[31] |
Li Y, Fu X, Duan D, et al. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme(Harvey) setchell[J]. Marine Drugs,2017,15(2):49. doi: 10.3390/md15020049
|
[32] |
Frattaruolo L, Carullo G, Brindisi M, et al. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of nf-kb/mapk pathway[J]. Antioxidants,2019,8:186. doi: 10.3390/antiox8060186
|
[33] |
邹娅雪, 付晓婷, 段德麟, 等. 利用斑马鱼模型研究琼胶寡糖抗氧化机制[J]. 食品工业科技,2019(4):286−298. [Zou Yaxue, Fu Xiaoting, Duan Deilin, et al. Antioxidant activities of agaro-oligosaccharides in AAPH-induced zebrafish model[J]. Science and Technology of Food Industry,2019(4):286−298.
|
[34] |
Zou Y, Fu X, Liu N, et al. The synergistic anti-inflammatory activities of agaro-oligosaccharides with different degrees of polymerization[J]. Journal of Applied Phycology,2019,31(4):2547−2558. doi: 10.1007/s10811-019-1740-2
|
[35] |
Na Yi-rang, Seok Seung-hyeok, Bae Min-won, et al. Protective effects of vitamin E against 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) induced toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety,2009,72(3):714−719. doi: 10.1016/j.ecoenv.2008.09.015
|
[36] |
Tae-Young C, Jin-Hwa K, Han K D, et al. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds[J]. Pigment cell Research,2007,20(2):120−127. doi: 10.1111/j.1600-0749.2007.00365.x
|
[37] |
Jacobsen C, Sørensen, Ann-Dorit M, et al. Source, extraction, characterization, and applications of novel antioxidants from seaweed[J]. Annual Review of Food Science and Technology,2019,10(1).
|
[38] |
Dion M Z, Wang Y J, Bregante D, et al. The use of a 2,2'-azobis(2-amidinopropane) dihydrochloride stress model as an indicator of oxidation susceptibility for monoclonal antibodies[J]. Journal of Pharmaceutical Ences,2018,107(2):550−558.
|
[39] |
Betigeri S, Thakur A, Raghavan K. Use of 2, 2′-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs[J]. Pharmaceutical Research,2005,22(2):310−317. doi: 10.1007/s11095-004-1199-x
|
[40] |
陈汝家, 朱俊靖, 周盛梅, 等. 斑马鱼模型在药物毒性与安全性评价中的应用[J]. 毒理学杂志,2012,26(3):224−228. [Chen Rujia, Zhu Junjing, Zhou Shengmei. Application of zebrafish model in drug toxicity and safety evaluation[J]. Journal of Toxical,2012,26(3):224−228.
|
[41] |
Phull A, Majid M, Haq I, et al. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar[J]. International Journal of Biological Macromolecules,2017,97:468−480. doi: 10.1016/j.ijbiomac.2017.01.051
|
[42] |
Lee W, Kang N, Kim E, et al. Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishigeokamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model[J]. Journal of Functional Foods,2017,28:83−89. doi: 10.1016/j.jff.2016.11.004
|
[1] | WU Li, ZHANG Yuan, TANG Chunhong, YOU Huan, CHANG Haijun, ZHANG Shuai. Effect of Whole Wheat Noodles on Biochemical Indexes and Histopathology of Type 2 Diabetic Rats[J]. Science and Technology of Food Industry, 2025, 46(3): 386-393. DOI: 10.13386/j.issn1002-0306.2024030144 |
[2] | ZHOU Xiran, JIAO Gena, ZENG Ji, LI Bohan, SHEN Lu. Effect of Yujing Jiangtang Recipe on Blood Glucose, Lipid and Serum Oxidative Stress Related Indexes in Type 2 diabetes Rats[J]. Science and Technology of Food Industry, 2023, 44(19): 433-439. DOI: 10.13386/j.issn1002-0306.2022120224 |
[3] | LU Yajun, LIU Ying, WANG Yi, HUANG Wen. Protective Effects of Polyphenol of Lotus Seed Epicarp on Oxidative Stress Damage Induced by T-BHP[J]. Science and Technology of Food Industry, 2023, 44(12): 397-404. DOI: 10.13386/j.issn1002-0306.2022070173 |
[4] | NI Jun, YUAN Cailian, SHE Rong, ZHAO Chengfa, LI Lijuan, YANG Xu, YANG Xiaoyan. Effect of Cell Generations on t-BHP-induced Oxidative Stress Model of Caco-2 Cells[J]. Science and Technology of Food Industry, 2023, 44(5): 60-66. DOI: 10.13386/j.issn1002-0306.2022050222 |
[5] | ZHAO Yuezhu, JIN Xin, ZHANG Yunan, LI Jingshuang, YU Yang. Protective Effect of Aloe Polysaccharide on Oxidative Stress Injury of HepG2 Cells Induced by D-galactose[J]. Science and Technology of Food Industry, 2023, 44(1): 405-412. DOI: 10.13386/j.issn1002-0306.2022040037 |
[6] | DING Lina, WANG Zhibin, WANG Yao, NING Jie, ZHANG Xiandang, DING Wenyu. Research Progress on the Utilization of Vitamin C Against Type 2 Diabetes[J]. Science and Technology of Food Industry, 2021, 42(15): 372-376. DOI: 10.13386/j.issn1002-0306.2020070147 |
[7] | LIU Yinlu, YANG Litao, BI Cuicui, WEI Fenfen, ZHANG Bo. Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice[J]. Science and Technology of Food Industry, 2021, 42(14): 320-327. DOI: 10.13386/j.issn1002-0306.2020090140 |
[8] | ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048 |
[9] | MENG Xiao, JIANG Li-shi, CHEN Yan, LIU Shu-kun. Effect of different test substances from Lactobacillus plantarum SCS2 on blood glucose and oxidative stress in mice[J]. Science and Technology of Food Industry, 2018, 39(8): 267-271. DOI: 10.13386/j.issn1002-0306.2018.08.049 |
[10] | LI Qing, LIU Jian- lei, JING Hao. Comparison of ovotransferrin and lactoferrin in oxidative stability[J]. Science and Technology of Food Industry, 2016, (05): 91-97. DOI: 10.13386/j.issn1002-0306.2016.05.010 |