Citation: | SUN Yi, XIA Hongzhi, NIU Kun, et al. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320−327. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030026. |
[1] |
COMPSTO J E, MCCLUNG M, LESLIE W. Osteoporosis[J]. Lancet,2019,393:364−376. doi: 10.1016/S0140-6736(18)32112-3
|
[2] |
PECK W, BURCKHARDT P, CHRISTIANSEN C, et al. Consensus development conference:Diagnosis, prophylaxis, and treatment of osteoporosis[J]. The American Journal of Medicine,1993,94(6):646−650. doi: 10.1016/0002-9343(93)90218-E
|
[3] |
SIRI E, CHEN Y, ABBOTT T, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures[J]. Archives of Internal Medicine,2004,164(10):1108−1112. doi: 10.1001/archinte.164.10.1108
|
[4] |
ILVA B BROY S, BOUTROY S, et al. Fracture risk prediction by non-BMD DXA measures:The 2015 ISCD Official Positions Part 2:Trabecular bone score[J]. Journal of Clinical Densitometry,2015,18(3):309−330. doi: 10.1016/j.jocd.2015.06.008
|
[5] |
ENSRUD K, BLACKWELL T, FINK H, et al. What proportion of incident radiographic vertebral fractures in older men is clinically diagnosed and vice versa:A prospective study[J]. Journal of Bone and Mineral Research,2016,31(8):1500−1503. doi: 10.1002/jbmr.2831
|
[6] |
ZEYTINOGLU M, JAIN R, VOKES T. Vertebral fracture assessment:Enhancing the diagnosis, prevention, and treatment of osteoporosis[J]. Bone,2017,104:54−65. doi: 10.1016/j.bone.2017.03.004
|
[7] |
ULIVIERI F, RINAUDO L. Beyond bone mineral density:A new dual X-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index[J]. Frontiers in Medicine (Lausanne),2020,7:590139.
|
[8] |
WINZENRIETH R, MICHELET F, HANS D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions:Effects of resolution and noise[J]. Journal of Clinical Densitometry,2013,16(3):287−296. doi: 10.1016/j.jocd.2012.05.001
|
[9] |
MCCLOSKEY E, ODEN A, HAREY NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX[J]. Journal of Bone and Mineral Research,2016,31(5):940−948. doi: 10.1002/jbmr.2734
|
[10] |
BRIOT K, PATEMOTTE S, KOLTA S, et al. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women:The OPUS study[J]. Bone,2013,57(1):232−236. doi: 10.1016/j.bone.2013.07.040
|
[11] |
胥小琴, 张丹, 陶新城, 等. 维生素K2防治绝经后骨质疏松症作用的荟萃分析[J]. 中国骨质疏松杂志,2021,27(12):1780−1787. [XU X Q, ZHANG D, TAO X C, et. al. A meta-analysis of the role of vitamin K2 in the prevention and treatment of osteoporosis in postmenopausal women[J]. Chinese Journal of Osteoporosis,2021,27(12):1780−1787.
|
[12] |
HUANG W, YANG S, SHAO J, et al. Signaling and transcriptional regulation in osteoblast commitment and differentiation[J]. Frontiers in Bioscience-Landmark,2007,12:3068−3092. doi: 10.2741/2296
|
[13] |
LI N, FELBER K, ELKS P, et al. Tracking gene expression during zebrafish osteoblast differentiation[J]. Developmental Dynamics,2009,238:459−466. doi: 10.1002/dvdy.21838
|
[14] |
KRISTIN D, IMKE A, ANASTASIA K, et al. Skeletal biology and disease modeling in zebrafish[J]. Journal of Bone and Mineral Research,2021,36(3):436−458. doi: 10.1002/jbmr.4256
|
[15] |
詹扬, 韦英杰, 王长梅, 等. 淫羊藿总黄酮对泼尼松龙诱导斑马鱼致骨质疏松的防治作用[J]. 中国医院药学杂志,2014,34(4):251−255. [ZHAN Y, WEI Y J, WANG C M, et al. Preventive effect of total flavonoids of Epomedii Folium on the zebrafish osteoporosis model induced by prednisolone[J]. Chinese Journal of Hospital Pharmacy,2014,34(4):251−255.
|
[16] |
曹语珈, 王凯, 王子丽, 等. 多花黄精多糖对斑马鱼2型糖尿病合并骨质疏松症模型的药效学研究[J]. 中草药,2021,52(21):6545−6551. [CAO Y J, WANG K, WANG Z L, et al. Pharmacodynamics study of polysaccharide from Polygonatum cyrtonema on zebrafish model with type 2 diabetic and osteoporosis[J]. Chinese Traditional and Herbal Drugs,2021,52(21):6545−6551.
|
[17] |
徐志平, 卞龙艳, 闻纯. 防己诺林碱对糖皮质激素诱导雄性骨质疏松大鼠影响的研究[J]. 中国骨质疏松杂志,2020,26(3):323−327. [XU Z P, BIAN L Y, WEN C. Effect of fangchinoline on glucocorticoid-induced osteoporosis in male rats[J]. Chinese Journal of Osteoporosis,2020,26(3):323−327.
|
[18] |
董莹莹, 王猛, 郭艳, 等. 低钙饲料联合地塞米松致大鼠骨质疏松模型的建立[J]. 中国骨质疏松杂志,2019,25(10):1393−1397,1404. [DONG Y Y, WANG M, GUO Y, et al. Establishment of a rat model of osteoporosis induced by low calcium diet combined with dexamethasone[J]. Chinese Journal of Osteoporosis,2019,25(10):1393−1397,1404.
|
[19] |
江瑞雪, 蒋欣泉, 文晋. 骨质疏松动物模型研究现状与进展[J]. 中国骨质疏松杂志,2022,28(7):1039−1044. [JIANG R X, JIANG X Q, WEN J. Research progress in osteoporosis animal modeling[J]. Chinese Journal of Osteoporosis,2022,28(7):1039−1044.
|
[20] |
郑慧丽, 华永庆, 刘欣慧, 等. 基于斑马鱼模型的枸杞子改善骨质疏松活性部位筛选及其机制初探[J]. 药学学报,2023,58(1):127−138. [ZHENG H L, HUA Y Q, LIU X H, et al. Screening of active components and preliminary mechanism exploration of Lycii Fructus for improving osteoporosis based on the zebrafish model[J]. Acta Pharmaceutica Sinica,2023,58(1):127−138.
|
[21] |
蒲诗雅, 裴得胜. 邻苯二甲酸酯暴露对斑马鱼幼鱼生长发育的影响[C]. 重庆市第二届生态环境技术大会暨重庆市环境科学学会2019年学术年会论文集, 2019:8. [PU S Y, PEI D S. Growth and development effects of zebrafish larvae after exposure to phthalic acid esters (PAEs)[C]. Proceedings of the 2nd Chongqing Eco-Environmental Technology Conference and the 2019 Academic Annual Meeting of Chongqing Environmental Science Society, 2019:8.
PU S Y, PEI D S. Growth and development effects of zebrafish larvae after exposure to phthalic acid esters (PAEs)[C]. Proceedings of the 2nd Chongqing Eco-Environmental Technology Conference and the 2019 Academic Annual Meeting of Chongqing Environmental Science Society, 2019: 8.
|
[22] |
谭登, 张玉, 张农山, 等. 补肾通络方对骨质疏松斑马鱼效应评价及破骨细胞自噬机制[J]. 中国实验方剂学杂志,2020,26(7):79−85. [TAN D, ZHANG Y, ZHANG N S, et al. Effect of Bushen Tongluo Formula on osteoporosis of zebrafish and study on autophagy mechanism of osteoclast[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(7):79−85.
|
[23] |
HUANG H, LIN H, LAN F, et al. Application of bone transgenic zebrafish in anti-osteoporosis chemical screening[J] Animal Models and Experimental Medicine, 2018, 1:53−61.
|
[24] |
HE H, WANG C, TANG Q, et al. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva[J]. Biomedicine & Pharmacotherapy,2018,101:981−987.
|
[25] |
詹扬, 李颖萌, 余婧婷, 等. 基于两种饮食的斑马鱼骨质疏松模型评价骨肽的抗骨质疏松作用[J]. 中国食品添加剂,2022,33(12):134−138. [ZHAN Y, LI Y M, YU J T, et al. Evaluation of the anti-osteoporosis effect of osteo peptide with two zebrafish osteoporosis models[J]. China Food Additives,2022,33(12):134−138.
|
[26] |
WESTTERFIELD M. The zebrafish book:A guide for the laboratory use of zebrafish (Brachydanio rerio)[M]. Westerfield, Eugene, OR, 1993.
|
[27] |
彭伟, 张文娟, 薛钰. 斑马鱼作为骨骼疾病模型的研究进展[J]. 中国实验动物学报,2019,27(2):248−253. [PENG W, ZHANG W J, XUE Y. Research progress of zebrafish models of bone diseases[J]. Acta Laboratorium Animalis Scientia Sinica,2019,27(2):248−253.
|
[28] |
肖世长. 淫羊藿素通过下调雌激素缺失状态下的铁过载抗绝经后骨质疏松研究[D]. 镇江:江苏大学, 2022. [XIAO S C. Icaritin inhibits postmenopausal osteoporosis by down regulating iron overload in estrogen deficient state[D]. Zhenjiang:Jiangsu University, 2022.
XIAO S C. Icaritin inhibits postmenopausal osteoporosis by down regulating iron overload in estrogen deficient state[D]. Zhenjiang: Jiangsu University, 2022.
|
[29] |
杨建, 佟广香, 郑先虎, 等. 肌间刺缺失对斑马鱼骨骼发育的影响[J]. 水生生物学报,2020,44(3):546−553. [YANG J, TONG G X, ZHENG X H, et al. Comparative analysis of skeletal development between wildtype zebrafish and intermuscular bone-deficient mutants[J]. Acta Hydrobiologica Sinica,2020,44(3):546−553.
|
1. |
于心雨,胡云霄,魏琳,王舒悦,李珊珊,胡福良. 2023年国内外蜂王浆研究概况. 中国蜂业. 2024(03): 38-49 .
![]() |