ZHANG Yanwei, YANG Ling, LU Jianghao, et al. Application Progress of Lactic Acid Bacteria Whole Genome Sequencing[J]. Science and Technology of Food Industry, 2022, 43(15): 444−450. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080128.
Citation: ZHANG Yanwei, YANG Ling, LU Jianghao, et al. Application Progress of Lactic Acid Bacteria Whole Genome Sequencing[J]. Science and Technology of Food Industry, 2022, 43(15): 444−450. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080128.

Application Progress of Lactic Acid Bacteria Whole Genome Sequencing

More Information
  • Received Date: August 11, 2021
  • Available Online: May 27, 2022
  • Lactic acid bacteria are widespread in nature, with rich species diversity, and are widely used in the food, feed and clinical medicine. Currently, the majority of probiotics are lactic acid bacteria. Recently, the whole-genome sequencing is booming, which has greatly promoted the development and application of LAB. Based on the whole genome information of lactic acid bacteria, it can systematically and comprehensively understand the metabolic characteristics, potential probiotic functions and application directions of strains, and can more accurately explore the inheritance, evolution and classification of lactic acid bacteria. The safety evaluation procedure of lactic acid bacteria requires searching whether there are genes related to drug resistance, virulence, and pathogen at the genome level, and determining whether the related genes can be transferred horizontally. It can efficiently and completely determine the genetic stability of lactic acid bacteria in the process of industrial application, using whole-genome sequencing technology to compare the differences of genomes of different generations strains. Reconstruction of the genome-scale metabolic network model can predict the behavior of organisms under specific conditions and systematically guide metabolic engineering of microbial. This article reviews the application status of whole-genome sequencing in metabolic characteristics, genetic, evolution, safety and stability of lactic acid bacteria, aiming to provide theoretical support for the genome of lactic acid bacteria.
  • [1]
    DE FILIPPIS F, EDOARDO P, ERCOLINI D. The food-gut axis: Lactic acid bacteria and their link to food, the gut microbiome and human health[J]. FEMS Microbiol Rev,2020,44(4):454−489. doi: 10.1093/femsre/fuaa015
    [2]
    KIM S K, GUEVARRA R B, KIM Y T, et al. Role of probiotics in human Gut Microbiome-Associated diseases[J]. J Microbiol Biotechnol,2019,29(9):1335−1350. doi: 10.4014/jmb.1906.06064
    [3]
    KOK C R, HUTKINS R. Yogurt and other fermented foods as sources of health-promoting bacteria[J]. Nutrition Reviews,2018,76(Suppl 1):4−15.
    [4]
    WU C, HUANG J, ZHOU R. Genomics of lactic acid bacteria: Current status and potential applications[J]. Critical Reviews in Microbiology,2017,43(4):393−404. doi: 10.1080/1040841X.2016.1179623
    [5]
    ENDO A, TANIZAWA Y, ARITA M. Isolation and identification of lactic acid bacteria from environmental samples[J]. Methods Mol Biol,2019,1887:3−13.
    [6]
    HÜBSCHMANN D, SCHLESNER M. Evaluation of whole genome sequencing data[J]. Methods Mol Biol,2019,1956:321−336.
    [7]
    SANGER F A G, BARRELL B G, BROWNR N L, et al. Nucleotide sequence of bacteriophage phi X174 DNA[J]. Nature,1977,265(5596):687−695. doi: 10.1038/265687a0
    [8]
    SLATKO B E, GARDNER A F, AUSUBEL F M. Overview of next-generation sequencing technologies[J]. Curr Protoc Mol Biol,2018,122(1):e59.
    [9]
    MCCOMBIE W R, MARDIS E R. Next-generation sequencing technologies[J]. Cold Spring Harb Perspect Med,2019,9(11):a036798. doi: 10.1101/cshperspect.a036798
    [10]
    RHOADS A A K. PacBio sequencing and its applications[J]. Genomics Proteomics Bioinformatics,2015,13(5):278−289. doi: 10.1016/j.gpb.2015.08.002
    [11]
    LU H G F, NING Z. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics,2016,14(5):265−279. doi: 10.1016/j.gpb.2016.05.004
    [12]
    VAN DIJK E L, JASZCZYSZYN Y, NAQUIN D, et al. The third revolution in sequencing technology[J]. Trends Genet,2018,34(9):666−681. doi: 10.1016/j.tig.2018.05.008
    [13]
    CALI D S, KIM J S, GHOSE S, et al. Nanopore sequencing technology and tools for genome assembly: Computational analysis of the current state, bottlenecks and future directions[J]. Brief Bioinform,2019,20(4):1542−1559. doi: 10.1093/bib/bby017
    [14]
    PASOLLI E, DE FILIPPIS F, MAURIELLO I E, et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J]. Nat Commun,2020,11(1):2610. doi: 10.1038/s41467-020-16438-8
    [15]
    BOLOTIN A, WINCKER P, MAUGER S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Research,2001,11:731−753. doi: 10.1101/gr.169701
    [16]
    张文羿. 益生菌Lactobacillus casei Zhang全基因组序列的测定及比较分析[D]. 呼和浩特: 内蒙古农业大学, 2010

    ZHANG W Y. Determination and comparative analysis of the complete genome sequence of Lactobacillus casei Zhang[D]. Hohhot: Inner Mongolia Agricultural University, 2010.
    [17]
    STEFANOVIC E, FITZGERALD G, MCAULIFFE O. Advances in the genomics and metabolomics of dairy lactobacilli: A review[J]. Food Microbiology,2017,61:33−49. doi: 10.1016/j.fm.2016.08.009
    [18]
    黄涛. 我国传统泡菜中植物乳杆菌NCU116的发酵特性及益生功能相关基因解析[D]. 南昌: 南昌大学, 2020

    HUANG T. Analysis of fermentation characteristics and probiotic function-related genes of Lactobacillus plantarum NCU116 in traditional pickles in my country[D]. Nanchang: Nanchang University, 2020.
    [19]
    JANG S Y, HEO J, PARK M R, et al. Genome characteristics of Lactobacillus fermentum strain JDFM216 for application as probiotic bacteria[J]. J Microbiol Biotechnol,2017,27(7):1266−1271. doi: 10.4014/jmb.1703.03013
    [20]
    WANG Y, NAN S, QIN Y, et al. The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin[J]. Journal of Biotechnology,2018,266:84−88. doi: 10.1016/j.jbiotec.2017.12.006
    [21]
    宋宇琴, 张和平. 乳酸菌微进化的研究进展[J]. 微生物学报,2015,55(11):1371−1377. [SONG Y Q, ZHANG H P. Research progress on the microevolution of lactic acid bacteria[J]. Acta Microbiology,2015,55(11):1371−1377.

    SONG Y Q, ZHANG H P. Research progress on the microevolution of lactic acid bacteria[J]. Acta Microbiology, 2015, 55(11): 1371-1377.
    [22]
    PARKS D H, MARIA C, WAITE D W, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life[J]. Nature biotechnology,2018,36(10):996−1004. doi: 10.1038/nbt.4229
    [23]
    HUANG C H, CHEN C C, LIOU J S, et al. Genome-based reclassification of Lactobacillus casei: Emended classification and description of the species Lactobacillus zeae[J]. Int J Syst Evol Microbiol,2020,70(6):3755−3762. doi: 10.1099/ijsem.0.003969
    [24]
    PAPIZADEH M, ROHANI M, NAHREVANIAN H, et al. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends[J]. Microb Pathog,2017,111:118−131. doi: 10.1016/j.micpath.2017.08.021
    [25]
    VIVEK N, HAZEENA S H, GODAN T K, et al. Genomics of lactic acid bacteria for glycerol dissimilation[J]. Mol Biotechnol,2019,61(8):562−578. doi: 10.1007/s12033-019-00186-2
    [26]
    KONSTANTINOS P, RANIA A, ELENI M, et al. Acquisition through horizontal gene transfer of plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 points towards the dairy origin of the species[J]. Plos One,2015,10(1):e0116337. doi: 10.1371/journal.pone.0116337
    [27]
    WUTHEICH D, BERTHOUD H, WECHSLER D, et al. The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species[J]. Frontiers in Microbiology,2017,8:218.
    [28]
    CIUFO S, KANNAN S, SHARMA S, et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI[J]. Int J Syst Evol Microbiol,2018,68(7):2386−2392. doi: 10.1099/ijsem.0.002809
    [29]
    SUN Z, HARRIS H M, MCCANN A, et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nat Commun,2015,29(6):8322.
    [30]
    SALVETTI E, HARRIS H M B, FELIS G E, et al. Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification[J]. Appl Environ Microbiol,2018,84(20):e02052.
    [31]
    PARKS D H, CHUVOCHINA M, WAITE D W, et al. A standardized bacterial taxonomy based>Salvetti E, Harris HMB, Felis GE, O’Toole PW. comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification[J]. Appl Environ Microbiol,2018,84(17):e00993.
    [32]
    RODRIGUEZ-SERRANO G M, GARCÍA-GARIBAY M, CRUZ-GUERRERO A E, et al. Proteolytic system of Streptococcus thermophilus[J]. J Microbiol Biotechnol,2018,28(10):1581−1588. doi: 10.4014/jmb.1807.07017
    [33]
    ZHOU G, QIU X, WU X, et al. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite[J]. J Hazard Mater,2021,408:124883. doi: 10.1016/j.jhazmat.2020.124883
    [34]
    ZHANG Z Y, LIU C, ZHU Y Z, et al. Complete genome sequence of Lactobacillus plantarum JDM1[J]. Journal of Bacteriology,2009,191(15):5020−5021. doi: 10.1128/JB.00587-09
    [35]
    LI B, JIN D, SMITH E E, et al. Safety assessment of Lactobacillus helveticus KLDS1.8701 based on whole genome sequencing and oral toxicity studies[J]. Toxins (Basel),2017,9(10):1−16.
    [36]
    张文羿, 白梅, 张和平. 益生乳酸菌遗传稳定性研究进展[J]. 微生物学报,2014,54(4):361−366. [ZHANG W Y, BAI M, ZHANG H P. Research progress on genetic stability of probiotic lactic acid bacteria[J]. Acta Microbiology,2014,54(4):361−366.

    ZHANG W Y, BAI M, ZHANG H P. Research progress on genetic stability of probiotic lactic acid bacteria[J]. Acta Microbiology, 2014, 54(4): 361-366.
    [37]
    STAGE M, GUSTAFSSON A W, JØRGENSEN M, et al. Lactobacillus rhamnosus GG genomic and phenotypic stability in an industrial production process[J]. Applied and Environmental Microbiology,2020,86(6):e02780−02719.
    [38]
    FENG C, ZHANG F, WANG B, et al. Genome-wide analysis of fermentation and probiotic trait stability in Lactobacillus plantarum during continuous culture[J]. Journal of Dairy Science,2020,103(1):117−127. doi: 10.3168/jds.2019-17049
    [39]
    SZYMCZAK P, FILIPE S, COVAS G, et al. Cell wall glycans mediate recognition of the dairy bacterium Streptococcus thermophilus by bacteriophages[J]. Appl Environ Microbiol,2018,84(23):e01847.
    [40]
    DA SILVA DUARTE V, GIARETTA S, CAMPANARO S, et al. A cryptic non-inducible prophage confers phage-immunity on the Streptococcus thermophilus M17PTZA496[J]. Viruses,2018,11(1):7. doi: 10.3390/v11010007
    [41]
    GUO T, ZHANG C, XIN Y, et al. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus[J]. J Ind Microbiol Biotechnol,2016,43(5):681−689. doi: 10.1007/s10295-016-1739-5
    [42]
    裴彰明. 乳杆菌前噬菌体的特征分析及对肠道菌群的影响[D]. 无锡: 江南大学, 2019

    PEI Z M. Characteristic analysis of Lactobacillus prophage and its influence on the intestinal flora[D]. Wuxi: Jiangnan University, 2019.
    [43]
    ALEXANDER L M, OH J H, STAPLETON D S, et al. Exploiting prophage-mediated lysis for biotherapeutic release by Lactobacillus reuteri[J]. Appl Environ Microbiol,2019,85(10):e02335−.
    [44]
    WEI B, PENG Z, HUANG T, et al. Stability of potential prophages in commercial strain Lactobacillus plantarum NCU116 under various stressors[J]. Archives of Microbiology,2020,202(5):1241−1250. doi: 10.1007/s00203-020-01813-2
    [45]
    KRISTJANSDOTTIR T, BOSMA E F, SANTOS F, et al. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory[J]. Microb Cell Fact,2019,18(1):186. doi: 10.1186/s12934-019-1229-3
    [46]
    LEVERING J, FIEDLER T, SIEG A, et al. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets[J]. J Biotechnol,2016,232:25−37. doi: 10.1016/j.jbiotec.2016.01.035
    [47]
    OLIVEIRA A P, NIELSEN J, FRSTER J. Modeling Lactococcus lactis using a genome-scale flux model[J]. BMC Microbiol,2005,5:39. doi: 10.1186/1471-2180-5-39
    [48]
    XU N, LIU J, AI L, et al. Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W[J]. Gene,2015,554(2):140−147. doi: 10.1016/j.gene.2014.10.034
    [49]
    ELENA V L, HAMILTON J J, BUFFY S, et al. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC334 and 12A[J]. Plos One,2014,9(11):e110785. doi: 10.1371/journal.pone.0110785
    [50]
    MENDOZA S N, OLIVIER B G, MOLENAAR D, et al. A systematic assessment of current genome-scale metabolic reconstruction tools[J]. Genome Biol,2019,20(1):158. doi: 10.1186/s13059-019-1769-1
  • Related Articles

    [1]HE Yuxing, BAI Gaowa, YU Jinghe, LIU Wei, YANG Xiaofeng, LIU Mingchao, Wuyundalai. Probiotic Characterization, Safety and Whole Genome Association Analysis of Lacticaseibacillus rhamnosus Z23[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070391
    [2]HUANG Yan, SU Yue, LI Shiyang, QI Xuehe, JIA Ai, JIANG Yujun, YANG Xinyan, MAN Chaoxin. Screening of Postbiotics against Salmonella and Whole Genome Analysis of the Original Strain[J]. Science and Technology of Food Industry, 2025, 46(6): 195-205. DOI: 10.13386/j.issn1002-0306.2024040240
    [3]LIU Shan, JIANG Yangdan, YAN Jisha, XIE Yuxuan, ZHAO Sijia, HE Qitian, ZHAO Jiayuan. Whole Genome Sequencing and Biological Characterization of Bacillus cereus GW-01[J]. Science and Technology of Food Industry, 2024, 45(7): 167-176. DOI: 10.13386/j.issn1002-0306.2023060031
    [4]CHEN Jiangkui, LI Jing, YIN Chunyan, LIAN Qimeng, YE Jia. Effects of Four Kinds of Antioxidants on the Oxidative Stability of Xanthoceras sorbifolia Bunge Oil and Analysis of Its Fatty Acid Compositions[J]. Science and Technology of Food Industry, 2022, 43(12): 70-76. DOI: 10.13386/j.issn1002-0306.2021090033
    [5]XU Wei, GE Yang-yang, CHEN Cui-ting, MA Ting-ting. Microorganism composition and main metabolic pathways analysis of traditional Kombucha by metagenomic technology[J]. Science and Technology of Food Industry, 2018, 39(5): 119-123,129.
    [6]LI Cheng-long, LIU Shu-zhen, ZHOU Cai-qiong. Effect of part of the trace elements on genomic stability[J]. Science and Technology of Food Industry, 2015, (02): 392-396. DOI: 10.13386/j.issn1002-0306.2015.02.077
    [7]YUAN Fang, FU Yu-xin, HUANG Yao, ZHONG Liang, LU Zhao-xin, LV Feng-xia, ZHAO Hai-zhen, BIE Xiao-mei. The breeding for high-yield subtilosina strain with genome shuffling[J]. Science and Technology of Food Industry, 2014, (22): 167-171. DOI: 10.13386/j.issn1002-0306.2014.22.028
    [8]Optimizing process of genome shuffling in Rhodotorula sp. producing lycopene[J]. Science and Technology of Food Industry, 2013, (08): 228-231. DOI: 10.13386/j.issn1002-0306.2013.08.032
    [9]Enzymatic characteristics and thermal stability model of polyphenol oxidase from potato[J]. Science and Technology of Food Industry, 2012, (19): 92-96. DOI: 10.13386/j.issn1002-0306.2012.19.035
    [10]一品红红色素的提取及其稳定性研究[J]. Science and Technology of Food Industry, 1999, (06): 24-26. DOI: 10.13386/j.issn1002-0306.1999.06.068
  • Cited by

    Periodical cited type(7)

    1. 刘辉,季海峰,王四新,陈美霞,张董燕. 1株猪源动物联合乳杆菌S7全基因组测序及生物信息学分析. 中国畜牧兽医. 2025(01): 25-38 .
    2. 陈万义,钟福霞,刘晓燕,姚璐,居万涛. 下一代测序技术在乳品质量与安全中的应用研究进展. 乳业科学与技术. 2025(02): 40-46 .
    3. 卢美欢,仝泽方,马英辉,张美丽,李利军. 利用乳酸乳球菌发酵大豆蛋白产低聚肽的研究. 食品工业科技. 2024(05): 1-7 . 本站查看
    4. 黄志钰,黎旭,李幸,金庭飞,陶纯长,刘宗争. 罗伊氏粘液乳杆菌K07的生物学特性及其基因分析. 现代食品科技. 2024(04): 73-83 .
    5. 蒋大成,郝沛研,程文,李潘贤,方曙光. 发酵食品中乳酸菌的作用探讨. 食品安全导刊. 2023(07): 99-101 .
    6. 李欣媛,杨凤妍,吕厚姣,耿伟涛,王艳萍. 产马乳酒乳杆菌马乳酒亚种ZW18益生基因分析. 中国酿造. 2023(12): 62-69 .
    7. 阙云飞,杨昌彪,朱平,申鹰,杨久玲,黄坤宁,李占彬. 腐乳发酵过程中微生物种群结构研究进展. 食品安全质量检测学报. 2022(05): 1582-1587 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (593) PDF downloads (114) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return