LIU Shan, JIANG Yangdan, YAN Jisha, et al. Whole Genome Sequencing and Biological Characterization of Bacillus cereus GW-01[J]. Science and Technology of Food Industry, 2024, 45(7): 167−176. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060031.
Citation: LIU Shan, JIANG Yangdan, YAN Jisha, et al. Whole Genome Sequencing and Biological Characterization of Bacillus cereus GW-01[J]. Science and Technology of Food Industry, 2024, 45(7): 167−176. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060031.

Whole Genome Sequencing and Biological Characterization of Bacillus cereus GW-01

More Information
  • Received Date: June 05, 2023
  • Available Online: January 30, 2024
  • Objective: To analyze the genome sequence information and biological properties of the pre-screened high-performance cypermethrin (β-CY)-degrading Bacillus cereus strain GW-01 through whole genome sequencing and bioinformatics, and to provide valuable insights for its safety assessment. Methods: The degradation ability of GW-01 towards β-CY was verified using HPLC. The whole genome of strain GW-01 was sequenced using third-generation single-molecule sequencing technology based on the second-generation Illumina NovaSeq and third-generation PacBio Sequel sequencing platforms. The sequencing data underwent analyses for genome assembly, gene prediction, functional annotation, prediction of carbohydrate-activating enzymes, virulence factors, and antibiotic resistance. Additionally, a phylogenetic tree was constructed for strain GW-01 based on the gyrA gene sequence. Results: On day 6, GW-01 degraded 48.4% of β-CY. The whole genome size of GW-01 strain was 5244145 bp with a cyclic genome type and an average GC content of 36.43%. It encoded a total of 5314 genes, including 104 tRNA genes and 313 ncRNAs. The whole genome sequences of GW-01 were annotated in the GO, KEGG, COG, NR, Swiss-Prot, CAZy, VFDB, and CARD databases, yielding 3536, 4714, 4434, 5290, 3854, 135, 263 and 96 annotated genes, respectively. GW-01 exhibited higher GC content and fewer virulence factors and resistance genes compared to the other four closely related strains. Conclusion: GW-01 displayed a distinct evolutionary pathway and a lower number of toxin-encoding genes compared to common Bacillus cereus strains, suggesting its higher safety profile.
  • [1]
    王舒叆, 王子元, 张敏. 不同抑菌剂对青稞鲜湿面中蜡样芽孢杆菌的抑制作用[J]. 食品科学,2020,41(13):206−211. [WANG S Y, WANG Z Y, ZHANG M. Effects of different bacteriostatic agents on Bacillus cereus in the fresh wet surface of highland barley[J]. Food Science,2020,41(13):206−211.]

    WANG S Y, WANG Z Y, ZHANG M. Effects of different bacteriostatic agents on Bacillus cereus in the fresh wet surface of highland barley[J]. Food Science, 2020, 4113): 206211.
    [2]
    SETLOW P. Spores of Bacillus subtilis:Their resistance to and killing by radiation, heat and chemicals[J]. Journal of Applied Microbiology,2006,101(3):514−525. doi: 10.1111/j.1365-2672.2005.02736.x
    [3]
    FENG Y, L WANG, A KNAN, et al. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens[J]. Poultry Science,2020,99(1):263−271. doi: 10.3382/ps/pez482
    [4]
    DIERICK K, VAN COILLIE E, SWIECICKA I, et al. Fatal family outbreak of Bacillus cereus-associated food poisoning[J]. Journal of Clinical Microbiology,2005,43(8):4277−4279. doi: 10.1128/JCM.43.8.4277-4279.2005
    [5]
    Food and Agriculture Organization of the United Nations (FAO). Probiotic in animal nutrition[S]. 2016.
    [6]
    ZHAO Y, YUAN L, WAN J, et al. Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology,2016,49:37−242.
    [7]
    JAING Y, S ZHUO, SARKODIE E K, et al. The effects of Bacillus cereus QSI-1 on intestinal barrier function and mucosal gene transcription in crucian carp ( Carassius auratus gibelio)[J]. Aquaculture Reports,2020,17:100356. doi: 10.1016/j.aqrep.2020.100356
    [8]
    LUO Y, ZAHNG M L, ZAHNG M L, et al. Bacillus cereus alters bile acid composition and alleviates high-carbohydrate diet-induced hepatic lipid accumulation in nile tilapia ( Oreochromis niloticus)[J]. Journal of Agricultural and Food Chemistry,2023,71(12):4825−4836. doi: 10.1021/acs.jafc.2c07945
    [9]
    LERECLUS D, AGAISSE H, GRANDVALET C, et al. Regulation of toxin and virulence gene transcription in Bacillus thur ingiensis[J]. International Journal of Medical Microbiology,2000,290(4-5):295−299. doi: 10.1016/S1438-4221(00)80024-7
    [10]
    SHAHN K, YAO Y Y, WANG J Y, et al. Effect of probiotic Bacillus cereus DM423 on the flavor formation of fermented sausage[J]. Food Research International,2023,172:113210. doi: 10.1016/j.foodres.2023.113210
    [11]
    钟舒红, 彭红艳, 李军, 等. 不同方法测定益生菌体外抑菌活性的比较研究[J]. 黑龙江畜牧兽医,2022,6:115−119. [ZHONG S H, PENG Y H, LI J, et al. Comparative study of different methods for determining the in vitro bacteriostatic activity of probiotics[J]. Heilongjiang Animal Husbandry and Veterinary Medicine,2022,6:115−119.]

    ZHONG S H, PENG Y H, LI J, et al. Comparative study of different methods for determining the in vitro bacteriostatic activity of probiotics[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2022, 6: 115119.
    [12]
    ZHAO J Y, JIANG Y D, GONG L M, et al. Mechanism of β-cypermethrin metabolism by Bacillus cereus GW-01[J]. Chemical Engineering Journal,2022,430:132961. doi: 10.1016/j.cej.2021.132961
    [13]
    XIE Y X, GONG L M, LIU S, et al. Antioxidants improve β-cypermethrin degradation by alleviating oxidative damage and increasing bioavailability by Bacillus cereus GW-01[J]. Environmental Research,2023,236:116680. doi: 10.1016/j.envres.2023.116680
    [14]
    JIANG Y, LIAO Y, SI C et al. Oral administration of Bacillus cereus GW-01 alleviates the accumulation and detrimental effects of β-cypermethrin in mice[J]. Chemosphere,2022,312:137333.
    [15]
    CHIN C S, PAUL PELUSO, FRITZ J, et al. Phased diploid genome assembly with single-molecule real-time sequencing[J]. Nature Methods,2016,13:1050−1054. doi: 10.1038/nmeth.4035
    [16]
    KOREN S, WALENZ B P, ERLIN K, et al. Canu:Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Research,2017,27(5):22−736.
    [17]
    WALLKER B J, ABEEL T, SHEA T, et al. Pilon:An integrated tool for comprehensive microbial variant detection and genome assembly improvement[J]. PLoS One,2014,9(11):e112963. doi: 10.1371/journal.pone.0112963
    [18]
    ASBURNER M, BALLCA, BLAKE J A, et al. Gene ontology:Tool for the unification of biology[J]. Nature Genetics,2000,25(1):25−29. doi: 10.1038/75556
    [19]
    TATUSOV R L, FEDOROVA N D, JACKSON J D, et al. The COG database:An updated version includes eukaryotes[J]. BMC Bioinformatics,2003,4(1):41. doi: 10.1186/1471-2105-4-41
    [20]
    STOTHARD P, WISHART D S. Circular genome visualization and exploration using CG View[J]. Bioinformatics,2005,21(4):537−539. doi: 10.1093/bioinformatics/bti054
    [21]
    LI WZ, JAROSZEWSKI, GODZIK A. Tolerating some redundancy significantly speeds up clustering of large protein databases[J]. Bioinformatics,2002,18(1):77−82. doi: 10.1093/bioinformatics/18.1.77
    [22]
    CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active enzymes database (CAZy):An expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(Database issue):D233-D238.
    [23]
    BAIROCH A, APWEILER R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Research,2000,28(1):45−48. doi: 10.1093/nar/28.1.45
    [24]
    CHEN L H, ZHENG D D, LIU B, et al. VFDB 2016:Hierarchical and refined dataset for big data analysis—10 years on[J]. Nucleic Acids Research 2016, 44(Database issue):D694−D697.
    [25]
    MCARTHUR A G, WAGLECHNER N, NIZAM F, et al. The comprehensive antibiotic resistance database[J]. Antimicrobial Agents and Chemotherapy,2013,57(7):3348−3357.
    [26]
    YAMAMOTO S, BOUVET P J M, HARAYAMA S. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences:Comparison with the grouping by DNA-DNA hybridization[J]. International Journal of Systematic & Evolutionary Microbiology,1999,49(Pt1):87−95.
    [27]
    CHUN J, BAE K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie van Leeuwenhoek,2000,78(2):123−127. doi: 10.1023/A:1026555830014
    [28]
    DAUGA C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae:A model molecule for molecular systematic studies[J]. International Journal of Systematic and Evolutionary Microbiology,2002,52(2):531−547. doi: 10.1099/00207713-52-2-531
    [29]
    SERGEEV N, DISTLER M, VARGAS M, et al. Microarray analysis of Bacillus cereus group virulence factors[J]. Journal of Microbiological Methods,2006,65(3):488−502. doi: 10.1016/j.mimet.2005.09.013
    [30]
    余庆. 鸡白痢沙门氏菌毒力因子分析及对SPF鸡致病性研究[D]. 武汉:华中农业大学华中农业大学, 2018. [YU Q. Virulence factor analysis of Salmonella pullorum and its pathogenicity to SPF chickens[D]. Wuhan:Huazhong Agricultural University, 2018.]

    YU Q. Virulence factor analysis of Salmonella pullorum and its pathogenicity to SPF chickens[D]. Wuhan: Huazhong Agricultural University, 2018.
    [31]
    LIM J S, KIM M R, KIM W, et al. Detection and differentiation of non-emetic and emetic Bacillus cereus strains in food by real-time PCR[J]. Journal of the Korean Society for Applied Biological Chemistry,2011,54(1):105−111.
    [32]
    刘芳, 罗臻, 黄静敏, 等. 致病性蜡样芽孢杆菌的研究进展[J]. 检验检刊,2016,26(1):68−71. [LIU F, LUO Z, HUANG J M, et al. Research progress of pathogenic Bacillus cereus[J]. Journal of Laboratory and Inspection,2016,26(1):68−71.]

    LIU F, LUO Z, HUANG J M, et al. Research progress of pathogenic Bacillus cereus[J]. Journal of Laboratory and Inspection, 2016, 261): 6871.
    [33]
    陈玉娟, 赵瑶, 马鲜平, 等. 一株乳源蜡样芽孢杆菌肠毒素基因克隆与序列分析[J]. 中国奶牛,2020(11):1−7. [CHEN Yujuan, ZHAO Yao, Ma Xianping, et al. Cloning and sequence analysis of enterotoxin gene from Lactobacillus cereus[J]. Dairy Cow of China,2020(11):1−7.]

    CHEN Yujuan, ZHAO Yao, Ma Xianping, et al. Cloning and sequence analysis of enterotoxin gene from Lactobacillus cereus[J]. Dairy Cow of China, 202011): 17.
    [34]
    DIETRICH R, JESSBERGER N, EHLING S, et al. The food poisoning toxins of Bacillus cereus[J]. Toxins,2021,13(2):98. doi: 10.3390/toxins13020098
    [35]
    李玲, 刘耀, 魏元苗, 等. 食品中蜡样芽孢杆菌耐药性及其机制研究进展[J]. 微生物学通报,2021,48(12):11. [LI L, LIU Y, WEI Y M, et al. Research progress on drug resistance of Bacillus cereus in food and its mechanism[J]. Bulletin of Microbiology,2021,48(12):11.]

    LI L, LIU Y, WEI Y M, et al. Research progress on drug resistance of Bacillus cereus in food and its mechanism[J]. Bulletin of Microbiology, 2021, 4812): 11.
    [36]
    许一凡, 盛康亮, 王永中. 一株耐热蜡样芽孢杆菌的鉴定及其缓解炎症性肠病的功效评价[J]. 食品科学,2023,44(2):173−180. [XU Y F, SHENG K G, WANG Y Z. Identification of a heat-resistant strain of Bacillus cereus and evaluation of its efficacy in alleviating inflammatory bowel disease[J]. Food Science,2023,44(2):173−180.]

    XU Y F, SHENG K G, WANG Y Z. Identification of a heat-resistant strain of Bacillus cereus and evaluation of its efficacy in alleviating inflammatory bowel disease[J]. Food Science, 2023, 442): 173180.
    [37]
    李家旭, 贝翎, 袁晚晴, 等. 非致病性蜡样芽孢杆菌的益生功能与应用[J]. 现代食品科技,2023,39(4):341−348. [LI J X, BEI L, YUAN W Q, et al. Probiotic functions and applications of non-pathogenic Bacillus cereus sp[J]. Modern Food Science and Technology,2023,39(4):341−348.]

    LI J X, BEI L, YUAN W Q, et al. Probiotic functions and applications of non-pathogenic Bacillus cereus sp[J]. Modern Food Science and Technology, 2023, 394): 341348.
    [38]
    GRUTSCH A A, NIMMER P S, PITTSLEY R H, et al. Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry[J]. Fine Focus,2018,4(2):203−222.
    [39]
    LI W, PIRES S M, LIU Z, et al. Surveillance of foodborne disease outbreaks in China, 2003–2017[J]. Food Control,2020,118:107359. doi: 10.1016/j.foodcont.2020.107359
    [40]
    CUI Y, MARTLBAUER E, DIETRICH R, et al. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus[J]. Critical Reviews in Toxicology,2019,49(4):342−356. doi: 10.1080/10408444.2019.1609410
    [41]
    ZHAO Y, YUAN L, WAN J, et al. Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology,2016,49:237−242.
    [42]
    YANG G, CAO H, JIANG W, et al. Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp ( Carassius auratus var. Pengze):Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology[J]. Aquaculture Research,2019,50(8):2207−2217. doi: 10.1111/are.14102
    [43]
    WANG N, JIANG M, ZHANG P, et al. Amelioration of Cd-induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio[J]. Chemosphere,2020,245:125613. doi: 10.1016/j.chemosphere.2019.125613
    [44]
    师伟伟. 肺炎链球菌中0-连接的糖基转移酶gtfa及其激活子gtfb的结构和功能研究[D]. 合肥:中国科学技术大学, 2014. SHI W W. Structure and function of 0-ligated glycosyltransferase gtfa and its activator gtfb in Streptococcus pneumoniae[D]. Hefei:University of Science and Technology of China, 2014.
    [45]
    ZHU F, ZHANG H, WU H. Glycosyltransferase-mediated sweet modification in oral streptococci[J]. Journal of Dental Research,2015,94(5):659−665. doi: 10.1177/0022034515574865
    [46]
    CHEN P, LIU R, HUANG M, et al. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans[J]. Journal of Biological Chemistry,2020,295(31):10638−10652.
    [47]
    BIELY P. Microbila carbohydrate esterases deacetylating plant polysaccharides[J]. Biotechnology Advances,2012,30(6):1575−1588. doi: 10.1016/j.biotechadv.2012.04.010
    [48]
    VACCA M, CELAON G, CALABRESE F M, et al. The controversial role of human gut Lachnospiraceae[J]. Microorganisms,2020,8(4):573. doi: 10.3390/microorganisms8040573
    [49]
    FOX D, MATHUR A, XUE Y S, et al. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome[J]. Nature Communications,2020,11(1):760. doi: 10.1038/s41467-020-14534-3
    [50]
    CEUPPENS S, RAJKOVIC A, HEYNDRICKX M, et al. Regulation of toxin production by Bacillus cereus and its food safety implications[J]. Critical Reviews in Microbiology,2011,37(3):188−213. doi: 10.3109/1040841X.2011.558832
    [51]
    BISWAS B R, SONENSHEIN A L. Genome-wide identification of Listeria monocytogenes CodY-binding sites[J]. Molecular Microbiology,2020,113(4):841−858. doi: 10.1111/mmi.14449
    [52]
    HUILLET E, BRIDOUX L, WANAPAISAN P, et al. The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579[J]. PLoS One,2017,12(10):0184975.
    [53]
    CUI Y F, MARTBAUER E, DIETRICH, R et al. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus[J]. Critical Reviews in Toxicology,2019,15(11):1−7.
    [54]
    TSILIA V, KERCKHOF F M, RAJKOVIC A, et al. Bacillus cereus NVH 0500/00 can adhere to mucin but cannot produce enterotoxins during gastrointestinal simulation[J]. Applied and Environmental Microbiology,2015,82(1):289−286.
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (157) PDF downloads (34) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return