ZHANG Zhixuan, HAN Jiaojiao, BAO Wei, et al. Regulation of Fermented Wax Gourd on Intestinal Microflora of Mice Infected with Staphylococcus aureus [J]. Science and Technology of Food Industry, 2021, 42(20): 149−156. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040128.
Citation: ZHANG Zhixuan, HAN Jiaojiao, BAO Wei, et al. Regulation of Fermented Wax Gourd on Intestinal Microflora of Mice Infected with Staphylococcus aureus [J]. Science and Technology of Food Industry, 2021, 42(20): 149−156. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040128.

Regulation of Fermented Wax Gourd on Intestinal Microflora of Mice Infected with Staphylococcus aureus

More Information
  • Received Date: April 12, 2021
  • Available Online: August 18, 2021
  • Objective: To explore the mitigation effects of fermented wax gourd microorganisms and mouse intestinal flora on Staphylococcus aureus. Methods: The ICR mice were randomly divided into the control group (CT), smelly wax gourd group (SW), Staphylococcus aureus group (SA) and Staphylococcus aureus + smelly wax gourd group (SA+SW) according to gender. 16S rDNA high-throughput sequencing was used to analyze the dominant flora of the mouse intestines, the differences in flora, the changes of probiotics in the mouse intestines, and the correlation between the intestinal flora and short-chain fatty acids. Results: Whether male or female mice, fermented wax gourd could change the structure of the intestinal flora of mice infected with Staphylococcus aureus to make it closer to the CT group. Compared with the CT group, the relative abundance of Lactobacillus sp. in the SW group of male and female mice decreased from 32.51% and 44.34% to 7.56% and 6.86%, respectively. The Lactobacillus sp. in the SA group also decreased to 15.68% and 11.02%.The relative abundance of Lactobacillus sp. in SA+SW group rose to 25.30% and 39.16%. The change trend of Bacteroides sp. and Lactobacillus sp. was the same. Clostridium sp. and Muribaculum sp. of male and female mice. The relative abundance increased in the SW group, while the relative abundance decreased in the SA+SW group; compared with the control group, males infected with Staphylococcus aureus. The abundance of probiotics producing bacteria in the mouse intestine decreased from 51.37% to 13.56%, and the SA+SW group recovered to 43.61%. Fermented wax gourd acts on mice infected with Staphylococcus aureus to increase the synthesis of SCFAs and reduce the body's inflammatory response. Conclusion: Fermented wax gourd could improve the intestinal flora, thereby effectively alleviating the effect of Staphylococcus aureus on the intestines of mice.
  • [1]
    叶雷. 发酵食品: 有利于心脏健康?[J]. 心血管病防治知识(科普版),2019,16(19):21−23. [Ye L. Fermented food: good for heart health?[J]. Prevention and Treatment of Cardiovascular Disease,2019,16(19):21−23.
    [2]
    罗江钊. 食用发酵食品可减少社会焦虑症[J]. 中国食品学报,2015,18(4):270−270. [Luo J Z. Eating fermented foods can reduce social anxiety[J]. Journal of Chinese Institute of Food Science and Technology,2015,18(4):270−270.
    [3]
    Wu Z F, Zhuang B W, Weng P F, et al. Fermentation quality characteristics and flavor formation changes during the process of pickled wax gourd in Eastern Zhejiang[J]. International Journal of Food Properties,2016,19(2):409−419. doi: 10.1080/10942912.2015.1027775
    [4]
    Wu Z F, Sun L, Zhang X, et al. Quantitative analysis of predominant yeasts and volatile compounds in the process of pickled wax gourd[J]. Journal of Food,2016,14(1):92−100.
    [5]
    Shen B, Wu Z, Li H, et al. Effects of inoculated starter of lactic acid bacteria on quality and microbial diversity of pickled wax gourd in Eastern Zhejiang[J]. Journal of Food Processing and Preservation,2017,41(2):1−8.
    [6]
    Chamlagain B, Edelmann M, Kariluoto S, et al. Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices[J]. Food Chemistry,2015,166:630−638. doi: 10.1016/j.foodchem.2014.06.068
    [7]
    Plé C, Breton J, Daniel C, et al. Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew?[J]. International Journal of Food Microbiology,2015,213:139−143. doi: 10.1016/j.ijfoodmicro.2015.03.015
    [8]
    Derrien M, Van Hylckama Vlieg J E. Fate, activity, and impact of ingested bacteria within the human gut microbiota[J]. Trends in Microbiology,2015,23(6):354−366. doi: 10.1016/j.tim.2015.03.002
    [9]
    Li D, Wang P, Wang P, et al. Targeting the gut microbiota by dietary nutrients: A new avenue for human health[J]. Critical Reviews in Food Technology,2019,59(2):181−195. doi: 10.1080/10408398.2017.1363708
    [10]
    Yamashiro Yuichiro. Gut microbiota in health and disease[J]. Annals of Nutrition and Metabolism,2017,71:242−246. doi: 10.1159/000481627
    [11]
    Liao Y, Cai C, Yang C, et al. Effect of protein sources in formulated diets on the growth, immune response, and intestinal microflora of pearl oyster Pinctada fucata martensii[J]. Aquaculture Reports,2020,16:1−8.
    [12]
    David M Z, Daum R S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic[J]. Clin Microbiol Rev,2010,23(3):616−687. doi: 10.1128/CMR.00081-09
    [13]
    Arne S. Alternative non-antibody scaffolds for molecular recognition[J]. Current Opinion in Biotechnology,2007,18:295−304. doi: 10.1016/j.copbio.2007.04.010
    [14]
    杨明锋, 陈创夫, 王正荣, 等. 金黄色葡萄球菌感染小鼠乳房炎模型的建立[J]. 中国兽医学报,2011,31(1):107−109. [Yang M F, Chen C F, Wang Z G, et al. Establishment of mastitis model in mice infected by Staphylococcus aureus[J]. Chinese Journal of Veterinary Medicine,2011,31(1):107−109.
    [15]
    李炎燚. 瓜蒌水提物对小鼠金黄色葡萄球菌性乳腺炎的保护作用和机制研究[D]. 长春: 吉林大学, 2020.

    Li Y Y. Protective effect and mechanism of Trichosanthes kirilowii water extract on Staphylococcus aureus mastitis in mice[D]. Changchun: Jilin University, 2020.
    [16]
    李淑凡, 李鑫, 韩姣姣, 等. 金枪鱼红肉酶解液对小鼠抗疲劳和调节肠道菌群效果的研究[J]. 食品工业科技,2019,40(17):314−320. [Li S F, LI X, Han J J, et al. Anti-fatigue and gut microbiota modulation effects of tuna dark meat hydrolysate in mice[J]. Science and Technology of Food Industry,2019,40(17):314−320.
    [17]
    Lu C, Sun T, Li Y, et al. Modulation of the gut microbiota by krill oil in mice fed a high-sugar high-fat diet[J]. Front Microbiol,2017,8:905. doi: 10.3389/fmicb.2017.00905
    [18]
    Han X, Guo J, You Y, et al. A fast and accurate way to determine short chain fatty acids in mouse feces based on GC-MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2018,1099:73−82. doi: 10.1016/j.jchromb.2018.09.013
    [19]
    Morrison D J, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes,2016,7(3):189−200. doi: 10.1080/19490976.2015.1134082
    [20]
    袁晓阳, 陆胜民, 郁志芳. 自然发酵腌制冬瓜主要发酵菌种及风味物质鉴定[J]. 中国食品学报,2009,9(1):219−225. [Yuan X Y, Lu S G, Yu Z F. Identification of main fermentation strains and flavor substances of naturally fermented and pickled winter melon[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(1):219−225. doi: 10.3969/j.issn.1009-7848.2009.01.037
    [21]
    Rezaei M, Moniri R, Mousavi S G. Molecular analysis and susceptibility pattern of meticillin-resistant Staphylococcus aureus strains in emergency department patients and related risk factors in Iran[J]. J Hosp Infect,2015,89(3):186−191. doi: 10.1016/j.jhin.2014.11.023
    [22]
    Masahiro T, Yoko S, Satoshi A, et al. Influence of various antimicrobial agents on the intestinal flora in an intestinal MRSA-carrying rat model[J]. Journal of Infection and Chemotherapy,2004,10(6):338−342. doi: 10.1007/s10156-004-0346-Y
    [23]
    Mohamed N, Wang M Y, Le Huec J C, et al. Vaccine development to prevent Staphylococcus aureus surgical-site infections[J]. Br J Surg,2017,104(2):e41−e54. doi: 10.1002/bjs.10454
    [24]
    武英, 周洪彬, 李文赟. 抗金黄色葡萄球菌的新策略[J]. 国外医药(抗生素分册),2019,40(4):316−322. [Wu Y, Zhou H B, Li W Y. A new treatment strategy against Staphylococcus aureus[J]. World Notes on Antibiotics,2019,40(4):316−322.
    [25]
    Vieco-Saiz N, Belguesmia Y, Raspoet R, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production[J]. Front Microbiol,2019,10:1−17. doi: 10.3389/fmicb.2019.00001
    [26]
    Forkus B, Ritter S, Vlysidis M, et al. Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts[J]. Sci Rep,2017,7:40695. doi: 10.1038/srep40695
    [27]
    付文政, 张春泽, 贾岩峰. 肠道内菌群结构与大肠肿瘤的相关性[J]. 中国中西医结合外科杂志,2016,22(2):120−124. [Fu Wenzheng, Zhang Chunze, Jia Yanfeng. Relationship of microbial community structure in intestine with colorectal cancer[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine,2016,22(2):120−124. doi: 10.3969/j.issn.1007-6948.2016.02.004
    [28]
    Leth M L, Ejby M, Workman C, et al. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut[J]. Nature Microbiology,2018,3(5):570−580. doi: 10.1038/s41564-018-0132-8
    [29]
    Kazuyuki Kasahara, Kimberly A, Krautkramer, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model[J]. Nature Microbiology, 2018, 3(12):1461-1471.
    [30]
    Zeng H, Umar S, Rust B, et al. Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer[J]. Int J Mol Sci,2019,20(5):1214. doi: 10.3390/ijms20051214
    [31]
    戴博, 王广义. 短链脂肪酸对肠道健康的调控机制研究[J]. 广东化工,2020,47(24):63−54. [Dai B, Wang G Y. Regulation mechanism of short chain fatty acids on intestinal health[J]. Guangdong Chemical Industry,2020,47(24):63−54. doi: 10.3969/j.issn.1007-1865.2020.24.027
    [32]
    Zapolska-Downar D, Siennicka A, Kaczmarczyk M, et al. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: The role of NF-kappaB and PPARalpha[J]. J Nutr Biochem,2004,15(4):220−228. doi: 10.1016/j.jnutbio.2003.11.008
    [33]
    严康, 冯宝宝, 詹康, 等. 短链脂肪酸对奶牛瘤胃上皮细胞的炎性细胞因子和G-蛋白偶联受体41表达的影响[J]. 动物营养学报,2019,31(3):1259−1265. [Yan Kg, Feng B B, Zhan K, et al. Effects of short chain fatty acids on expression of inflammatory factors and g-protein coupled receptor 41 in bovine rumen epithelial cells[J]. Chinese Journal of Animal Nutrition,2019,31(3):1259−1265.
  • Related Articles

    [1]JIA Jianhui, DOU Boxin, ZHANG Chujia, GAO Man, ZHANG Zhi, LIU Ying, ZHANG Na. Effect of Fatty Acid Chain Length on Properties of Rice Starch-Fatty Acid Complexes[J]. Science and Technology of Food Industry, 2024, 45(15): 137-143. DOI: 10.13386/j.issn1002-0306.2023120210
    [2]GUO Jiaming, CAO Yanwen, DAI Runfang, LIU Chun, YANG Huiru, LI Huijiao, FU Ying, ZHANG Guohua. Investigation and Research on Common Food in China Labeled "Lactic Acid Bacteria" and "Probiotics"[J]. Science and Technology of Food Industry, 2024, 45(12): 225-233. DOI: 10.13386/j.issn1002-0306.2023080079
    [3]HUANG Yanyan, LIANG Yantong, WU Jiamin, ZENG Xin'an, ZENG Qiaohui, CAO Shilin, LIAO Lan, WANG Langhong. A Review of the Mechanism of Probiotics Controlling Obesity through Intestinal Flora[J]. Science and Technology of Food Industry, 2023, 44(8): 1-8. DOI: 10.13386/j.issn1002-0306.2022080280
    [4]HUANG Shiying, CHEN Jiedong, HAN Mengyuan, XU Caihong, GUO Fuchuan. Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters[J]. Science and Technology of Food Industry, 2023, 44(3): 381-390. DOI: 10.13386/j.issn1002-0306.2022030170
    [5]YANG Liting, WANG Ziwei, WANG Jiaqi, ZHENG Nan. Research Progress of Short-Chain Fatty Acids and Its Regulation of Intestinal Inflammation[J]. Science and Technology of Food Industry, 2022, 43(24): 433-443. DOI: 10.13386/j.issn1002-0306.2021120212
    [6]YE Lufen, SONG Xujiao, MA Hao. Research Progress on the Relationship between Short-chain Fatty Acids Metabolized by Intestinal Flora and Depression[J]. Science and Technology of Food Industry, 2022, 43(7): 424-429. DOI: 10.13386/j.issn1002-0306.2021030387
    [7]ZHU Mingrui, YU Chenchen, XU Yanli, ZHANG Li, SUN Jianing, DENG Xiangjuan, WANG Zirong. Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents[J]. Science and Technology of Food Industry, 2021, 42(20): 365-371. DOI: 10.13386/j.issn1002-0306.2021020224
    [8]LI Ya-ting, OUYANG Peng-ling, QU Dan, JIANG Rui, SONG Li-hua. Effects of phytosterol ester on short-chain fatty acids in colon content of rats fed a high fat diet[J]. Science and Technology of Food Industry, 2018, 39(7): 292-297,302. DOI: 10.13386/j.issn1002-0306.2018.07.053
    [9]AI Dui, ZHANG Fu-xin, LI Yan-hua, SU Wei-li, YAN Hui-li, YU Ling-ling. Study on correlation between short-medium chain fatty acid and goaty flavor[J]. Science and Technology of Food Industry, 2015, (06): 113-116. DOI: 10.13386/j.issn1002-0306.2015.06.017
    [10]Synthesis of medium-chain fatty acid enriched diacylglycerol from Cinnamomum camphora seed oil[J]. Science and Technology of Food Industry, 2013, (12): 111-114. DOI: 10.13386/j.issn1002-0306.2013.12.035
  • Cited by

    Periodical cited type(9)

    1. 宋德方,李洪淼,许嘉媛,赵佳怡,刘金花. 罗汉果苷零蔗糖酸奶的研制及品质分析. 辽宁农业职业技术学院学报. 2025(02): 11-14 .
    2. 李春冬,徐同,高缘,刘国强,呼日,徐伟良,马信雅,高志海,吉日嘎拉图,郭梁. 高脂酸乳与普通酸乳品质对比分析. 乳业科学与技术. 2025(02): 9-14 .
    3. 段泊安,李倩文,王晓楠,陈树兴. 山茶花低糖酸奶工艺优化及其抗氧化活性分析. 食品安全质量检测学报. 2024(09): 271-277 .
    4. 周洋,黄亚杰,文进. 响应面法优化无乳糖酸奶的配方研究. 中国酿造. 2024(06): 189-194 .
    5. 於荣荣,孙欣燕,周頔,徐升,韩彬,汤泉,董艺凝. 基于混料设计研究代糖配比及其对炼乳品质的影响. 食品安全质量检测学报. 2024(15): 147-157 .
    6. 徐广新,杨仁琴,周炜,张海霞,华惠,印伯星,王来娣. 响应面法优化桂花酒酿酸奶制备工艺. 食品安全质量检测学报. 2024(23): 145-151 .
    7. 尹丽萍,张剑林,殷娜,黎进雪,王妍凌,达菊庆,李宁,武运. 模糊数学综合评价法结合响应面法优化红葡萄酒风味发酵乳工艺. 中国酿造. 2023(01): 168-173 .
    8. 沈雍徽,陈娜,邢宇,黄威. 不同糖醇对凝固型酸奶品质的影响. 中国乳业. 2023(12): 86-91 .
    9. 谭丽丽,程雅芳,付晶晶. 罗汉果食品开发研究进展. 食品安全导刊. 2022(10): 184-186+192 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (343) PDF downloads (29) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return