YANG Liting, WANG Ziwei, WANG Jiaqi, et al. Research Progress of Short-Chain Fatty Acids and Its Regulation of Intestinal Inflammation[J]. Science and Technology of Food Industry, 2022, 43(24): 433−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120212.
Citation: YANG Liting, WANG Ziwei, WANG Jiaqi, et al. Research Progress of Short-Chain Fatty Acids and Its Regulation of Intestinal Inflammation[J]. Science and Technology of Food Industry, 2022, 43(24): 433−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120212.

Research Progress of Short-Chain Fatty Acids and Its Regulation of Intestinal Inflammation

More Information
  • Received Date: December 19, 2021
  • Available Online: October 20, 2022
  • Gastrointestinal microorganisms in mammals are part of the bacterial ecosystem and play an important role in gastrointestinal development, function and regulation. Short-chain fatty acids (SCFAs) are metabolites produced by fermentation of beneficial bacteria in gastrointestinal microbiome, mainly including acetate, propionate and butyrate. Currently, most studies focus on the effect of microorganisms on host cell metabolism, but the regulation of short-chain fatty acids on intestinal inflammation and its mechanism is still worthy of attention. More and more studies have shown that SCFAs can provide energy for intestinal epithelial cells, protect the intestinal barrier, regulate intestinal inflammation and other functions. In the treatment of intestinal inflammation, SCFAs can be used as signal molecules to activate G protein-coupled receptors (GPCRs) on the cell surface and inhibit histone deacetylases (HDACs) through substrate transporters in the cell, thus achieving anti-inflammatory goals. In this paper, the composition and source of SCFAs, the synthesis pathway and distribution in the body, the effect on intestinal health, the molecular mechanism of regulation in intestinal inflammation and the effect of dietary fiber on the synthesis of SCFAs are reviewed. The mechanism of short-chain fatty acid regulation of intestinal inflammation is emphasized to provide theoretical basis for further research.
  • [1]
    BACKHED F, ROSWALL J, PENG Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life[J]. Cell Host & Microbe,2015,17(6):852−852.
    [2]
    DONOVAN S M. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health[J]. Gut Microbes,2017,8(2):75−81. doi: 10.1080/19490976.2017.1299309
    [3]
    GENTILE C L, WEIR T L. The gut microbiota at the intersection of diet and human health[J]. Science,2018,362(6416):776−780. doi: 10.1126/science.aau5812
    [4]
    MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients,2020,12(4):1107. doi: 10.3390/nu12041107
    [5]
    WOLEVER T M, JOSSE R G, LEITER L A, et al. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans[J]. Metabolism-Clinical and Experimental,1997,46(7):805−811. doi: 10.1016/S0026-0495(97)90127-X
    [6]
    RAGSDALE S W, PIERCE E. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2008,1784(12):1873−1898. doi: 10.1016/j.bbapap.2008.08.012
    [7]
    KOH A, DE V F, KOVATCHEVA D P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
    [8]
    邵茗, 谭韡, 罗和生. 短链脂肪酸参与多种疾病发病机制的研究进展[J]. 胃肠病学和肝病学杂志,2019,28(8):951−954. [SHAO M, TAN W, LUO H S. Research progress on the involvement of short-chain fatty acids in pathogenesis of various diseases[J]. Journal of Gastroenterology and Hepatology,2019,28(8):951−954. doi: 10.3969/j.issn.1006-5709.2019.08.026
    [9]
    VAN DER HEE B, WELLS J M. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol,2021,29(8):700−712. doi: 10.1016/j.tim.2021.02.001
    [10]
    LING J, FU H X, YANG H K, et al. Butyric acid: Applications and recent advances in its bioproduction[J]. Biotechnol Adv,2018,36(8):2101−2117. doi: 10.1016/j.biotechadv.2018.09.005
    [11]
    BARBER T M, KABISCH S, PFEIFFER A F H, et al. The health benefits of dietary fibre[J]. Nutrients,2020,12(10):3209. doi: 10.3390/nu12103209
    [12]
    LIN M Y, DE Z M R, VAN P J P M, et al. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases[J]. Frontiers in Immunology,2015,6:554.
    [13]
    SUN M, WU W, LIU Z, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol,2017,52(1):1−8. doi: 10.1007/s00535-016-1242-9
    [14]
    NASTASI C, CANDELA M, BONEFEID C M, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells[J]. Scientific Reports,2015,11(5):16148.
    [15]
    王璐璇, 刘玥宏, 朱继开, 等. 短链脂肪酸在疾病治疗中的研究进展[J]. 世界华人消化杂志,2017,25(13):1179−1186. [WANG L X, LIU Y H, ZHU J K, et al. Research progress of short chain fatty acids in the treatment of diseases[J]. World Chinese Journal of Digestology,2017,25(13):1179−1186. doi: 10.11569/wcjd.v25.i13.1179
    [16]
    WANG M, WICHIENCHOT S, HE X, et al. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends in Food Science & Technology,2019,88:1−9.
    [17]
    ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature,2008,451(7174):86−U13. doi: 10.1038/nature06450
    [18]
    YOSHIKAWA S, ARAOKA R, KAJIHARA Y, et al. Valerate production by Megasphaera elsdenii isolated from pig feces[J]. Journal of Bioscience and Bioengineering,2018,125(5):519−524. doi: 10.1016/j.jbiosc.2017.12.016
    [19]
    SCOTT K P, MARTIN J C, CAMPBELL G, et al. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "Roseburia inulinivorans"[J]. Journal of Bacteriology,2006,188(12):4340−4349. doi: 10.1128/JB.00137-06
    [20]
    DUNCAN S H, BARCENILLA A, STEWART C S, et al. Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine[J]. Applied and Environmental Microbiology,2002,68(10):5186−5190. doi: 10.1128/AEM.68.10.5186-5190.2002
    [21]
    REY F E, FAITH J J, BAIN J, et al. Dissecting the in vivo metabolic potential of two human gut acetogens[J]. Journal of Biological Chemistry,2010,285(29):22082−22090. doi: 10.1074/jbc.M110.117713
    [22]
    VAN D A P, BELZER C, GOOSSENS M, et al. Butyrate-producing clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model[J]. Isme Journal,2013,7(5):949−961. doi: 10.1038/ismej.2012.158
    [23]
    SHETTY S A, MARATHE N P, LANJEKAR V, et al. Comparative genome analysis of Megasphaera sp reveals niche specialization and its potential role in the human gut[J]. Plos One, 2013, 8(11): e79353.
    [24]
    REICHARDT N, DUNCAN S H, YOUNG P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. ISME J,2014,8(6):1323−1335. doi: 10.1038/ismej.2014.14
    [25]
    TANG W H W, LI D Y, HAZEN S L. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol,2019,16(3):137−154. doi: 10.1038/s41569-018-0108-7
    [26]
    HAYASHI H, SHIBATA K, SAKAMOTO M, et al. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces[J]. Int J Syst Evol Microbiol,2007,57(Pt 5):941−946.
    [27]
    LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol,2014,12(10):661−72. doi: 10.1038/nrmicro3344
    [28]
    PENG L, LI Z R, GRENN R S, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. Journal of Nutrition,2009,139(9):1619−1625. doi: 10.3945/jn.109.104638
    [29]
    LIU P, WANG Y, YANG G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J]. Pharmacological Research,2021,165:105420. doi: 10.1016/j.phrs.2021.105420
    [30]
    HUANG J, TANG W, ZHU S, et al. Biosynthesis of butyric acid by Clostridium tyrobutyricum[J]. Prep Biochem Biotechnol,2018,48(5):427−434. doi: 10.1080/10826068.2018.1452257
    [31]
    VITAL M, HOWE A C, TIEDJE J M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data[J]. Mbio,2014,5(2):e00889.
    [32]
    FENG Y, WANG Y, WANG P, et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy[J]. Cell Physiol Biochem,2018,49(1):190−205. doi: 10.1159/000492853
    [33]
    WONG J M, DE S R, KENDALL C W, et al. Colonic health: Fermentation and short chain fatty acids[J]. J Clin Gastroenterol,2006,40(3):235−243. doi: 10.1097/00004836-200603000-00015
    [34]
    ZENG H, UMAR S, RUST B, et al. Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer[J]. Int J Mol Sci,2019,20(5):1214. doi: 10.3390/ijms20051214
    [35]
    SIVAPRAKASAM S, BHUTIA Y D, YANG S, et al. Short-chain fatty acid transporters: Role in colonic homeostasis[J]. Compr Physiol,2017,8(1):299−314.
    [36]
    STUMPFF F. A look at the smelly side of physiology: Transport of short chain fatty acids[J]. Pflugers Arch,2018,470(4):571−598. doi: 10.1007/s00424-017-2105-9
    [37]
    FREDERICKS E, THEUNISSEN R, ROUX S. Short chain fatty acids and monocarboxylate transporters in irritable bowel syndrome[J]. Turk J Gastroenterol,2020,31(12):840−847.
    [38]
    BURGER-VAN P N, VINCENT A, PUIMAN P J, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection[J]. Biochemical Journal,2009,420:211−219. doi: 10.1042/BJ20082222
    [39]
    DONOHOE D R, COLLINS L B, WALI A, et al. The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation[J]. Mol Cell,2012,48(4):612−626. doi: 10.1016/j.molcel.2012.08.033
    [40]
    BLAAK E E, CANFORA E E, THEIS S, et al. Short chain fatty acids in human gut and metabolic health[J]. Benef Microbes,2020,11(5):411−455. doi: 10.3920/BM2020.0057
    [41]
    PELASEYED T, BERGSTROM J H, GUSTAFSSON J K, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system[J]. Immunological Reviews,2014,260(1):8−20. doi: 10.1111/imr.12182
    [42]
    HATAYAMA H, WASHITA J, KUWAJIMA A, et al. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T[J]. Biochemical and Biophysical Research Communications,2007,356(3):599−603. doi: 10.1016/j.bbrc.2007.03.025
    [43]
    GAUDIER E, RIVAL M, BUISINE M P, et al. Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon[J]. Physiological Research,2009,58(1):111−119.
    [44]
    HAMER H M, JONKERS D, VANHOUTVIN S, et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission[J]. Clinical Nutrition,2010,29(6):738−744. doi: 10.1016/j.clnu.2010.04.002
    [45]
    MA N, WU Y, XIE F, et al. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota[J]. Oncotarget,2017,8(27):44625−44638. doi: 10.18632/oncotarget.17886
    [46]
    HUANG C, SONG P, FAN P, et al. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets[J]. Journal of Nutrition,2015,145(12):2774−2780. doi: 10.3945/jn.115.217406
    [47]
    MA N, TIAN Y, WU Y, et al. Contributions of the interaction between dietary protein and gut microbiota to intestinal health[J]. Current Protein & Peptide Science,2017,18(8):795−808.
    [48]
    YAN H, AJUWON K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. Plos One,2017,12(6):e0179586.
    [49]
    EAMIN E E, MASCLEE A A, DEKKER J, et al. Short-chain fatty acids activate amp-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers[J]. Journal of Nutrition,2013,143(12):1872−1881. doi: 10.3945/jn.113.179549
    [50]
    MIAO W, WU X, WANG K, et al. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCbeta2[J]. Int J Mol Sci, 2016, 17(10): 1696.
    [51]
    TRAN V H, SUZUKI T. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier[J]. Journal of Nutrition,2018,148(4):552−561. doi: 10.1093/jn/nxy008
    [52]
    何荣香, 唐红艳, 杨玲, 等. 短链脂肪酸在单胃动物肠道中的生理功能及其作用机制的研究进展[J]. 中国畜牧杂志,2020,56(4):1−5. [HE R X, TANG H Y, YANG L, et al. Research progress on physiological function and mechanism of short-chain fatty acids in intestinal tract of monogastric animals[J]. Chinese Journal of Animal Science,2020,56(4):1−5.
    [53]
    MANRIQUE V D, GONZÁLEZ S M E. Short chain fatty acids (butyric acid) and intestinal diseases[J]. Nutr Hosp,2017,34(Suppl 4):58−61.
    [54]
    CANANI R B, DI C M, LEONE L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice[J]. Clinical Epigenetics,2012,4(1):4. doi: 10.1186/1868-7083-4-4
    [55]
    HILLS R D J, PONTEFRACT B A, MISHCON H R, et al. Gut microbiome: Profound implications for diet and disease[J]. Nutrients, 2019, 11(7): 1613.
    [56]
    SHI N, LI N, DUAN X, et al. Interaction between the gut microbiome and mucosal immune system[J]. Mil Med Res, 2017, 4: 14.
    [57]
    VINOLO M A R, RODRIGUES H G, HATANAKA E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. Journal of Nutritional Biochemistry, 2011, 22(9): 849-855.
    [58]
    VENKATRAMAN A, RAMAKRISHNA B S, SHAJI R V, et al. Amelioration of dextran sulfate colitis by butyrate: Role of heat shock protein 70 and NF-kappaB[J]. Am J Physiol Gastrointest Liver Physiol,2003,285(1):G177−184. doi: 10.1152/ajpgi.00307.2002
    [59]
    TAN J, MCKENZIE C, POTAMITIS M, et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol,2014,121:91−119.
    [60]
    DUBUQUOY L, ROUSSEAUX C, THURU X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases[J]. Gut,2006,55(9):1341−1349. doi: 10.1136/gut.2006.093484
    [61]
    SCHWAB M, REYNDERS V, LOITSCH S, et al. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling[J]. Mol Immunol,2007,44(15):3625−3362. doi: 10.1016/j.molimm.2007.04.010
    [62]
    SINGH N, BABY D, RAJGURU J P, et al. Inflammation and cancer[J]. Ann Afr Med,2019,18(3):121−126.
    [63]
    张晨, 敖日格乐, 王纯洁, 等. 短链脂肪酸介导的肠上皮和抗炎调节研究进展[J]. 中国畜牧杂志,2021,57(1):32−37. [ZHANG C, AO R G L, WANG C J, et al. Research progress in intestinal epithelial and anti-inflammatory regulation mediated by short-chain fatty acids[J]. Chinese Journal of Animal Science,2021,57(1):32−37.
    [64]
    王可鑫, 姜宁, 张爱忠. 短链脂肪酸介导的宿主肠道免疫调控机制[J]. 动物营养学报,2020,32(4):1544−1550. [WANG K X, JIANG N, ZAHNG A Z. Short-chain fatty acids mediate host intestinal immune regulation[J]. Chinese Journal of Animal Nutrition,2020,32(4):1544−1550. doi: 10.3969/j.issn.1006-267x.2020.04.010
    [65]
    IMOTO Y, KATO A, TAKABAYASHI T, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43[J]. Clin Exp Allergy,2018,48(5):544−554. doi: 10.1111/cea.13119
    [66]
    STODDART L A, SMITH N J, MILLIGAN G. International union of pharmacology. LXXI. free fatty acid receptors ffa1, -2, and-3: Pharmacology and pathophysiological functions[J]. Pharmacological Reviews,2008,60(4):405−417. doi: 10.1124/pr.108.00802
    [67]
    MARUTA H, YAMASHITA H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells[J]. PLoS One,2020,15(9):e0239428. doi: 10.1371/journal.pone.0239428
    [68]
    KOBAYASHI M, MIKAMI D, KIMURA H, et al. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-alpha-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells[J]. Biochemical and Biophysical Research Communications,2017,486(2):499−505. doi: 10.1016/j.bbrc.2017.03.071
    [69]
    IM D S. GPR119 and GPR55 as receptors for fatty acid ethanolamides, oleoylethanolamide and palmitoylethanolamide[J]. Int J Mol Sci,2021,22(3):1034. doi: 10.3390/ijms22031034
    [70]
    TOLHURST G, HEFFRON H, LAM Y S, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes,2012,61(2):364−371. doi: 10.2337/db11-1019
    [71]
    BHATT B, ZENG P, ZHU H, et al. Gpr109a Limits Microbiota-induced IL-23 production to constrain ILC3-mediated colonic inflammation[J]. J Immunol,2018,200(8):2905−2914. doi: 10.4049/jimmunol.1701625
    [72]
    AHMED K, TUNARU S, OFFERMANNS S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors[J]. Trends in Pharmacological Sciences,2009,30(11):557−562. doi: 10.1016/j.tips.2009.09.001
    [73]
    BOLOGNINI D, TOBIN A B, MOLLIGAN G, et al. The pharmacology and function of receptors for short-chain fatty acids[J]. Molecular Pharmacology,2016,89(3):388−398. doi: 10.1124/mol.115.102301
    [74]
    CHANG A J, ORTEGA F E, RIEGLER J, et al. Oxygen regulation of breathing through an olfactory receptor activated by lactate[J]. Nature,2015,527(7577):240−244. doi: 10.1038/nature15721
    [75]
    OHIRA H, TSUTSUI W, FUJIOKA Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?[J]. J Atheroscler Thromb,2017,24(7):660−672. doi: 10.5551/jat.RV17006
    [76]
    MACIA L, TAN J, VIEIRA A T, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nature Communications,2015,6:6734. doi: 10.1038/ncomms7734
    [77]
    SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity,2014,40(1):128−139. doi: 10.1016/j.immuni.2013.12.007
    [78]
    MARIñO E, RICHARDS J L, MCLEOD K H, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes[J]. Nat Immunol,2017,18(5):552−562. doi: 10.1038/ni.3713
    [79]
    PIROZZI C, FRANCISCO V, DI G F, et al. Butyrate modulates inflammation in chondrocytes via GPR43 receptor[J]. Cellular Physiology and Biochemistry,2018,51(1):228−243. doi: 10.1159/000495203
    [80]
    NAKAJIMA A, NAKATANI A, HASEGAWA S, et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages[J]. Plos One, 2017, 12(7): e0179696.
    [81]
    MIZUTA K, MATOBA A, SHIBATA S, et al. Obesity-induced asthma: Role of free fatty acid receptors[J]. Japanese Dental Science Review,2019,55(1):103−107. doi: 10.1016/j.jdsr.2019.07.002
    [82]
    OHIRA H, FUJIOKA Y, KATAGIRI C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages[J]. Journal of Atherosclerosis and Thrombosis,2013,20(5):425−442.
    [83]
    GRABARSKA A, DMOSZYNSKA G M, NOWOSADZKA E, et al. Histone deacetylase inhibitors-molecular mechanisms of actions and clinical applications[J]. Postepy Higieny I Medycyny Doswiadczalnej,2013,67:722−735. doi: 10.5604/17322693.1061381
    [84]
    JOHNSTONE R W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer[J]. Nat Rev Drug Discov,2002,1(4):287−299. doi: 10.1038/nrd772
    [85]
    ADCOCK I M. HDAC inhibitors as anti-inflammatory agents[J]. British Journal of Pharmacology,2007,150(7):829−831. doi: 10.1038/sj.bjp.0707166
    [86]
    ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology,2016,16(6):341−352. doi: 10.1038/nri.2016.42
    [87]
    LI M, VAN EB C A M, HENRICKS P A J, et al. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide-or tumor necrosis factor astimulated endothelial cells via activation of GPR4l/ 43 and inhibition of HDACs[J]. Frontiers in Pharmacology,2018,9:533. doi: 10.3389/fphar.2018.00533
    [88]
    CHANG P V, HAO L M, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(6):2247−2252. doi: 10.1073/pnas.1322269111
    [89]
    FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2013,504(7480):446−450.
    [90]
    冯焱, 闫丽欢, 冯江浩, 等. 膳食纤维与短链脂肪酸对肠道微生物以及宿主健康的影响[J]. 粮食与饲料工业,2021(4):37−41. [FENG Y, YAN L H, FENG J H, et al. Effects of dietary fiber and short-chain fatty acids on intestinal microbe and host health[J]. Cereal & Feed Industry,2021(4):37−41.
    [91]
    ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
    [92]
    BISHEHSARI F, ENGEN P A, PREITE N Z, et al. Dietary fiber treatment corrects the composition of gut microbiota, promotes scfa production, and suppresses colon carcinogenesis[J]. Genes, 2018, 9(2): 102.
    [93]
    KOVATCHEVA D P, NILSSON A, AKRAMI R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella[J]. Cell Metabolism,2015,22(6):971−982. doi: 10.1016/j.cmet.2015.10.001
    [94]
    WALKER A W, INCE J, DUNCAN S H, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota[J]. ISME J,2011,5(2):220−230. doi: 10.1038/ismej.2010.118
    [95]
    SALONEN A, LAHTI L, SALOJARVI J, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men[J]. Isme Journal,2014,8(11):2218−2230. doi: 10.1038/ismej.2014.63
    [96]
    CZEPIEL J, BIESIADA G, BRZOZOWSKI T, et al. The role of local and systemic cytokines in patients infected with clostridium difficile[J]. Journal of Physiology and Pharmacology,2014,65(5):695−703.
    [97]
    SUN X, WANG Y, MU Q, et al. Effect of different dietary pattern and soybean oligosaccharides supplementation on short chain fatty acids in intestinal tract[J]. Acta Nutrimenta Sinica,2007,29(3):268−270.
    [98]
    HALLERT C, BJORCK I, NYMAN M, et al. Increasing fecal butyrate in ulcerative colitis patients by diet: Controlled pilot study[J]. Inflammatory Bowel Diseases,2003,9(2):116−121. doi: 10.1097/00054725-200303000-00005
  • Cited by

    Periodical cited type(13)

    1. 沙琦,孙未一,范兴丽. 肠道菌群代谢物与抑郁症发病机制关系的研究. 浙江医学教育. 2025(01): 60-64 .
    2. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(03): 27-31 .
    3. 姜浩,赵杰,王铁云. “微生物-肠-脑轴”理论下述中医治疗郁症的研究进展. 中医临床研究. 2024(09): 135-138 .
    4. 张红娟,王崴,高敏,安邦,范雅娟,贾敏,李强. 抑郁症患者血清短链脂肪酸水平与症状及生化指标的相关性. 山西医科大学学报. 2024(06): 777-781 .
    5. 康艳宝,赵龙友. 抗抑郁药联合肠道菌群调节剂治疗抑郁症疗效分析. 中国基层医药. 2024(08): 1144-1148 .
    6. 徐曼华,李平,何兰英,高丽梅. 老年抑郁症患者应用微生态制剂辅助认知行为干预的效果. 国际精神病学杂志. 2024(06): 1784-1787 .
    7. 赵佳,沈馨,刘红霞,郭艳荣,高广琦,孙志宏. 益生菌缓解亚健康相关症状的研究进展. 中国食品学报. 2024(12): 432-440 .
    8. 胡科,张同同,张凯,王国强. 首发抑郁症患者肠道菌群多样性与抑郁症状的相关性分析. 微生物学通报. 2023(03): 1040-1051 .
    9. 任煜,张童,李宁,裴环,赵童,袁嘉丽. 基于“脾与小肠相通”理论探讨脾-肠-肠道微生态治疗抑郁症. 世界中西医结合杂志. 2023(05): 1031-1035 .
    10. 吴振宁,王琦,秦雪梅,田俊生. 肠道菌群及其代谢产物在中药治疗抑郁症中的研究进展. 中草药. 2023(14): 4713-4721 .
    11. 李秋颖,冯静,刘婕,杨蓉蓉,骆华正,蔡伦,韦理萍. 肠道菌群在抑郁症发病机制及中医药治疗中研究进展. 辽宁中医药大学学报. 2023(12): 96-101 .
    12. 袁霞红,刘林. 肠道菌群调节抑郁症机制及中医药防治研究进展. 中华中医药学刊. 2022(09): 167-170 .
    13. 徐慧慧,陈煦,赵芳,毛若曦,王文利,程智美,张雅丽. 饮食结构、营养成分对抑郁症的影响研究进展. 食品科学. 2022(23): 346-355 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return