Citation: | HUANG Shiying, CHEN Jiedong, HAN Mengyuan, et al. Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters[J]. Science and Technology of Food Industry, 2023, 44(3): 381−390. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030170. |
[1] |
NITTARI G, SCURI S, PETRELLI F, et al. Fighting obesity in children from European World Health Organization Member States. Epidemiological data, medical-social aspects, and prevention programs[J]. Clin Ter,2019,170(3):e223−e230.
|
[2] |
PAN X F, WANG L, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol,2021,9(6):373−392. doi: 10.1016/S2213-8587(21)00045-0
|
[3] |
LEE S J, SHIN S W. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med,2017,376(15):1491−1492.
|
[4] |
LIU B N, LIU X T, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837
|
[5] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027−1031. doi: 10.1038/nature05414
|
[6] |
高鑫, 山珊, 曾德永, 等. 石莼属绿藻多糖的生物活性研究进展[J]. 食品工业科技,2021,42(2):364−369. [GAO X, SHAN S, ZENG D Y, et al. Research progress on biological activity of ulvan[J]. Science and Technology of Food Industry,2021,42(2):364−369. doi: 10.13386/j.issn1002-0306.2020040007
|
[7] |
TENG Z, QIAN L, ZHOU Y. Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera[J]. Int J Biol Macromol,2013,62:254−256. doi: 10.1016/j.ijbiomac.2013.09.010
|
[8] |
SHANG Q, WANG Y, PAN L, et al. Dietary polysaccharide from Enteromorpha clathrata modulates gut microbiota and promotes the growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp.[J]. Mar Drugs,2018,16(5):167. doi: 10.3390/md16050167
|
[9] |
REN X, LIU L, GAMALLAT Y, et al. Enteromorpha and polysaccharides from Enteromorpha ameliorate loperamide-induced constipation in mice[J]. Biomed Pharmacother,2017,96:1075−1081. doi: 10.1016/j.biopha.2017.11.119
|
[10] |
KONG Q, DONG S Y, GAO J, et al. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota[J]. Int J Biol Macromol,2016,91:867−871. doi: 10.1016/j.ijbiomac.2016.06.036
|
[11] |
张宵, 刘杨, 滕博, 等. 基于肠道菌群的海藻多糖对部分疾病影响的研究进展[J]. 食品工业科技,2021,42(18):421−426. [ZHANG X, LIU Y, TENG B, et al. Research progress of the effects of seaweed polysaccharides on some diseases based on intestinal flora[J]. Science and Technology of Food Industry,2021,42(18):421−426. doi: 10.13386/j.issn1002-0306.2020080239
|
[12] |
CABRAL L, PERSINOTI G F, PAIXAO D A A, et al. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides[J]. Nature Communications, 2022, 13(1): 629-629.
|
[13] |
LITVAK Y, BYNDLOSS M X, TSOLIS R M, et al. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction[J]. Curr Opin Microbiol,2017,39:1−6. doi: 10.1016/j.mib.2017.07.003
|
[14] |
GOMEZ-ARANGO L F, BARRETT H L, MCINTYRE H D, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women[J]. Diabetes,2016,65(8):2214−2223. doi: 10.2337/db16-0278
|
[15] |
VOJINOVIC D, RADJABZADEH D, KURILSHIKOV A, et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts[J]. Nature Communications,2019,10(1):5813. doi: 10.1038/s41467-019-13721-1
|
[16] |
TUN H M, BRIDGMAN S L, CHARI R, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. Jama Pediatr,2018,172(4):368−377. doi: 10.1001/jamapediatrics.2017.5535
|
[17] |
ZHAO L, ZHANG Q, MA W N, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct,2017,8(12):4644−4656. doi: 10.1039/C7FO01383C
|
[18] |
WEI W, JIANG W B, TIAN Z, et al. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice[J]. Clin Nutr,2021,40(6):4234−4245. doi: 10.1016/j.clnu.2021.01.031
|
[19] |
PETERSEN C, BELL R, KIAG K A, et al. T cell-mediated regulation of the microbiota protects against obesity[J]. Science,2019,365:340.
|
[20] |
PIDCOCK S E, SKVORTSOV T, SANTOS F G, et al. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms[J]. Microb Genomics,2021,7(10):000638.
|
[21] |
CANI P D. Microbiota and metabolites in metabolic diseases[J]. Nat Rev Endocrinol,2019,15(2):69−70. doi: 10.1038/s41574-018-0143-9
|
[22] |
DENG X L, MA J, SONG M T, et al. Effects of products designed to modulate the gut microbiota on hyperlipidaemia[J]. Eur J Nutr,2019,58(7):2713−2729. doi: 10.1007/s00394-018-1821-z
|
[23] |
SCHOELER M, CAESAR R J R I E, DISORDERS M. Dietary lipids, gut microbiota and lipid metabolism[J]. 2019, 20(4): 461-472.
|
[24] |
FU J, BONDER M J, CENIT M C, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids[J]. Circulation Research,2015,117(9):817−824. doi: 10.1161/CIRCRESAHA.115.306807
|
[25] |
MESLIER V, LAIOLA M, ROAGER H M, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake[J]. Gut,2020,69(7):1258−1268. doi: 10.1136/gutjnl-2019-320438
|
[26] |
MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705−715. doi: 10.1016/j.chom.2018.05.012
|
[27] |
KLANCIC T, REIMER R A. Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health[J]. J Sport Health Sci,2020,9(2):110−118. doi: 10.1016/j.jshs.2019.04.004
|
[28] |
MO X, SUN Y, LIANG X, et al. Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites[J]. 2022, 281: 119046.
|
[29] |
XU S, AWEYA J, LI N, et al. Microbial catabolism of porphyra haitanensis polysaccharides by human gut microbiota[J]. 2019, 289: 177-186.
|
[30] |
TANG C, DING R, SUN J, et al. The impacts of natural polysaccharides on intestinal microbiota and immune response-A review[J]. 2019, 10(5): 2290-2312.
|
[31] |
NGUYEN S, KIM J, GUEVARRA R, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet[J]. Food & Function,2016,7(10):4193−4201.
|
[32] |
CHEN Y F, JIN L, LI Y H, et al. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice[J]. Journal of Functional Foods,2018,49:20−31. doi: 10.1016/j.jff.2018.08.015
|
[33] |
LI S Y, WANG L N, LIU B, et al. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice[J]. Food Funct,2020,11(5):4773−4784. doi: 10.1039/C9FO02857A
|
[34] |
LAGKOUVARDOS I, LESKER T R, HITCH T C A, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome,2019,7(1):28. doi: 10.1186/s40168-019-0637-2
|