Citation: | YE Lufen, SONG Xujiao, MA Hao. Research Progress on the Relationship between Short-chain Fatty Acids Metabolized by Intestinal Flora and Depression[J]. Science and Technology of Food Industry, 2022, 43(7): 424−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030387. |
[1] |
ZHOU B, ZHU Z, RANSOM B R, et al. Oligodendrocyte lineage cells and depression[J]. Molecular Psychiatry,2020:1−15.
|
[2] |
SOCHOCKA M, DONSKOW-ŁYSONIEWSKA K, DINIZ B S, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review[J]. Molecular Neurobiology,2019,56(3):1841−1851. doi: 10.1007/s12035-018-1188-4
|
[3] |
DINAN T G, CRYAN J F. The microbiome-gut-brain axis in health and disease[J]. Gastroenterology Clinics,2017,46(1):77−89. doi: 10.1016/j.gtc.2016.09.007
|
[4] |
KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
|
[5] |
REIGSTAD C S, SALMONSON C E, RAINEY J F, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. The Faseb Journal,2015,29(4):1395−1403. doi: 10.1096/fj.14-259598
|
[6] |
MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients,2020,12(4):1107. doi: 10.3390/nu12041107
|
[7] |
SKONIECZNA-ŻYDECKA K, GROCHANS E, MACIEJEWSKA D, et al. Faecal short chain fatty acids profile is changed in Polish depressive women[J]. Nutrients,2018,10(12):1939. doi: 10.3390/nu10121939
|
[8] |
KELLY J R, BORRE Y, O'BRIEN C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. Journal of Psychiatric Research,2016,82:109−118. doi: 10.1016/j.jpsychires.2016.07.019
|
[9] |
WINTER G, HART R A, CHARLESWORTH R P G, et al. Gut microbiome and depression: What we know and what we need to know[J]. Reviews in the Neurosciences,2018,29(6):629−643. doi: 10.1515/revneuro-2017-0072
|
[10] |
NEIS E P J G, DEJONG C H C, RENSEN S S. The role of microbial amino acid metabolism in host metabolism[J]. Nutrients,2015,7(4):2930−2946. doi: 10.3390/nu7042930
|
[11] |
LAYDEN B T, ANGUEIRA A R, BRODSKY M, et al. Short chain fatty acids and their receptors: New metabolic targets[J]. Translational Research,2013,161(3):131−140. doi: 10.1016/j.trsl.2012.10.007
|
[12] |
LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota[J]. Environmental Microbiology,2017,19(1):29−41. doi: 10.1111/1462-2920.13589
|
[13] |
FROST G, SLEETH M L, SAHURI-ARISOYLU M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nature Communications,2014,5(1):1−11.
|
[14] |
KAJI I, KARAKI S, KUWAHARA A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release[J]. Digestion,2014,89(1):31−36. doi: 10.1159/000356211
|
[15] |
GONZÁLEZ HERNÁNDEZ M A, CANFORA E E, JOCKEN J W E, et al. The short-chain fatty acid acetate in body weight control and insulin sensitivity[J]. Nutrients,2019,11(8):1943. doi: 10.3390/nu11081943
|
[16] |
OKAMOTO T, MORINO K, UGI S, et al. Microbiome potentiates endurance exercise through intestinal acetate production[J]. American Journal of Physiology-Endocrinology and Metabolism,2019,316(5):E956−E966. doi: 10.1152/ajpendo.00510.2018
|
[17] |
BHATTARAI Y, SCHMIDT B A, LINDEN D R, et al. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2017,313(1):G80−G87. doi: 10.1152/ajpgi.00448.2016
|
[18] |
HIRSCHBERG S, GISEVIUS B, DUSCHA A, et al. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases[J]. International Journal of Molecular Sciences,2019,20(12):3109. doi: 10.3390/ijms20123109
|
[19] |
LI J, HOU L, WANG C, et al. Short term intrarectal administration of sodium propionate induces antidepressant-like effects in rats exposed to chronic unpredictable mild stress[J]. Frontiers in Psychiatry,2018,9:454. doi: 10.3389/fpsyt.2018.00454
|
[20] |
MANRIQUE V D, GONZÁLEZ S M E. Ácidos grasos de cadena corta (ácido butírico) y patologías intestinales[J]. Nutrición Hospitalaria,2017,34:58−61.
|
[21] |
SUN J, WANG F, HONG G, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress[J]. Neuroscience Letters,2016,618:159−166. doi: 10.1016/j.neulet.2016.03.003
|
[22] |
WU M, TIAN T, MAO Q, et al. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice[J]. Translational Psychiatry,2020,10(1):1−10. doi: 10.1038/s41398-019-0665-5
|
[23] |
SPENCER R L, DEAK T. A users guide to HPA axis research[J]. Physiology & Behavior,2017,178:43−65.
|
[24] |
SUDO N. Microbiome, HPA axis and production of endocrine hormones in the gut[M]//Microbial endocrinology: The microbiota-gut-brain axis in health and disease. Springer, New York, NY, 2014: 177−194.
|
[25] |
WOELFER M, KASTIES V, KAHLFUSS S, et al. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder[J]. Neuroscience,2019,403:93−110. doi: 10.1016/j.neuroscience.2018.03.034
|
[26] |
KELLER J, GOMEZ R, WILLIAMS G, et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition[J]. Molecular Psychiatry,2017,22(4):527−536. doi: 10.1038/mp.2016.120
|
[27] |
VAN DE WOUW M, BOEHME M, LYTE J M, et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations[J]. The Journal of physiology,2018,596(20):4923−4944. doi: 10.1113/JP276431
|
[28] |
ALCAINO C, KNUTSON K R, TREICHEL A J, et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release[J]. Proceedings of the National Academy of Sciences,2018,115(32):7632−7641. doi: 10.1073/pnas.1804938115
|
[29] |
DELL'OSSO L, CARMASSI C, MUCCI F, et al. Depression, serotonin and tryptophan[J]. Current Pharmaceutical Design,2016,22(8):949−954. doi: 10.2174/1381612822666151214104826
|
[30] |
AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host & Microbe,2018,23(6):716−724.
|
[31] |
STRASSER B, GOSTNER J M, FUCHS D. Mood, food, and cognition: Role of tryptophan and serotonin[J]. Current Opinion in Clinical Nutrition & Metabolic Care,2016,19(1):55−61.
|
[32] |
VINCENT A D, WANG X Y, PARSONS S P, et al. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2018,315(5):G896−G907. doi: 10.1152/ajpgi.00237.2017
|
[33] |
JACOB L, ROCKEL T, KOSTEV K. Depression risk in patients with rheumatoid arthritis in the United Kingdom[J]. Rheumatology and Therapy,2017,4(1):195−200. doi: 10.1007/s40744-017-0058-2
|
[34] |
BAUER M E, TEIXEIRA A L. Inflammation in psychiatric disorders: What comes first?[J]. Annals of the New York Academy of Sciences,2019,1437(1):57−67. doi: 10.1111/nyas.13712
|
[35] |
BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: Double trouble[J]. Neuron,2020,107(2):234−256. doi: 10.1016/j.neuron.2020.06.002
|
[36] |
WILCK N, MATUS M G, KEARNEY S M, et al. Salt-responsive gut commensal modulates TH 17 axis and disease[J]. Nature,2017,551(7682):585−589. doi: 10.1038/nature24628
|
[37] |
FARZI A, FRÖHLICH E E, HOLZER P. Gut microbiota and the neuroendocrine system[J]. Neurotherapeutics,2018,15(1):5−22. doi: 10.1007/s13311-017-0600-5
|
[38] |
VENEGAS D P, FUENTE M, LANDSKRON G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology,2019,10:277. doi: 10.3389/fimmu.2019.00277
|
[39] |
MIYAMOTO J, HASEGAWA S, KASUBUCHI M, et al. Nutritional signaling via free fatty acid receptors[J]. International Journal of Molecular Sciences,2016,17(4):450. doi: 10.3390/ijms17040450
|
[40] |
KIMURA I, ICHIMURA A, OHUE-KITANO R, et al. Free fatty acid receptors in health and disease[J]. Physiological Reviews,2020,100(1):171−210. doi: 10.1152/physrev.00041.2018
|
[41] |
SILVA L G, FERGUSON B S, AVILA A S, et al. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells[J]. Journal of Animal Science,2018,96(12):5244−5252.
|
[42] |
CHEN W Y, ZHANG H, GATTA E, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal[J]. Alcohol,2019,78:79−87. doi: 10.1016/j.alcohol.2019.02.005
|
[43] |
TSAI Y L, LIN T L, CHANG C J, et al. Probiotics, prebiotics and amelioration of diseases[J]. Journal of Biomedical Science,2019,26(1):1−8. doi: 10.1186/s12929-018-0495-4
|
[44] |
KAZEMI A, NOORBALA A A, AZAM K, et al. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial[J]. Clinical Nutrition,2019,38(2):522−528. doi: 10.1016/j.clnu.2018.04.010
|
[45] |
LIU R T, WALSH R F L, SHEEHAN A E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials[J]. Neuroscience & Biobehavioral Reviews,2019,102:13−23.
|
[46] |
NAGPAL R, WANG S, AHMADI S, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome[J]. Scientific Reports,2018,8(1):1−15.
|
[47] |
CHEN R, XU Y, WU P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacological Research,2019,148:104403. doi: 10.1016/j.phrs.2019.104403
|
[48] |
ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Molecular Psychiatry,2016,21(6):786−796. doi: 10.1038/mp.2016.44
|
[49] |
HUANG H L, CHEN H T, LUO Q L, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota[J]. Journal of Digestive Diseases,2019,20(8):401−408. doi: 10.1111/1751-2980.12756
|
[50] |
ZHANG W, ZOU G, LI B, et al. Fecal microbiota transplantation (FMT) alleviates experimental colitis in mice by gut microbiota regulation[J]. Journal of Microbiology and Biotechnology,2020,30(8):1132−1141. doi: 10.4014/jmb.2002.02044
|