LI Jiayun, WANG Xinzhi, WEI Yuanqing, et al. Process Optimization of the Preparation of Hypoglycemic Peptides by Enzymatic Hydrolysis from Pinctada martensii Flesh and Peptides Analysis[J]. Science and Technology of Food Industry, 2021, 42(22): 202−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030326.
Citation: LI Jiayun, WANG Xinzhi, WEI Yuanqing, et al. Process Optimization of the Preparation of Hypoglycemic Peptides by Enzymatic Hydrolysis from Pinctada martensii Flesh and Peptides Analysis[J]. Science and Technology of Food Industry, 2021, 42(22): 202−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030326.

Process Optimization of the Preparation of Hypoglycemic Peptides by Enzymatic Hydrolysis from Pinctada martensii Flesh and Peptides Analysis

More Information
  • Received Date: March 28, 2021
  • Available Online: September 09, 2021
  • Objective: The purpose was to optimize the enzymatic hydrolysis process of Pinctada martensii flesh by in vitro dipeptidyl peptidase (DPP-IV) inhibition rate and glucose consumption of human liver cancer cell (HepG-2) insulin resistance model, and to analyze the hypoglycemic peptides. Methods: The glucose consumption of human liver cancer cell (HepG-2) insulin resistance model and the in vitro dipeptidyl peptidase (DPP-IV) inhibition rate were evaluated as indicators for comparison. The enzymatic hydrolysis effects of acid protease, alkaline protease, neutral protease, compound protease, trypsin, pepsin, and papain on Pinctada martensii flesh were compared and screened. The effect of enzymolysis temperature, material-liquid ratio, enzyme dosage, and enzymolysis time on the hypoglycemic activity of enzymatic hydrolysate were analyzed by single factor experiments and orthogonal test. The best enzymatic hydrolysis process was determined. Nano-LC Q Exactive Orbitrap Mass Spectrometry (Nano LC-MS/MS) was used to analyze the composition of peptides in enzymatic hydrolysis. Results: The product glucose consumption and DPP-IV inhibition rate of acid protease hydrolysis were better than other proteases. The optimal process conditions for the preparation of the Pinctada martensii flesh were: 45 ℃, 3 h, material-liquid ratio 1:3.5 (w:w), and 1000 U/g protamex, under these conditions, the glucose consumption was 37.53% and the DPP-IV inhibition rate was 74.21%. The molecular weight (MW) of 93.88% of peptides from Pinctada martensii flesh under the best technology was below 2000 Da. 22.63% of the peptides were hydrophobic peptides, and 74.92% of the peptides contained at least one hydrophobic amino acid at the N-terminus. Conclusion: The Pinctada martensii flesh hypoglycemic peptides prepared by the enzymatic method could inhibit the activity of DPP-IV and reduced insulin resistance to play a hypoglycemic effect, which had a certain guiding significance for the development of functional foods.
  • [1]
    杨书婷, 吴皓, 刘睿, 等. 干燥温度对珍珠贝软体中核苷影响[J]. 时珍国医国药,2019,30(5):1207−1210. [YANG S T, WU H, LIU R, et al. The effect of drying temperature on nucleosides in Pinctada martensii flesh[J]. Lishizhen Medicine and Materia Medica Research,2019,30(5):1207−1210.
    [2]
    杨书婷, 吴皓, 刘睿, 等. 三角帆蚌和马氏珍珠贝软体脂肪酸的分析[J]. 中成药,2019,41(5):1184−1187. [YANG S T, WU H, LIU R, et al. Analysis of fatty acids in Hyriopsis cumingii and Pinctada martensii flesh[J]. Chinese Traditional Patent Medicine,2019,41(5):1184−1187. doi: 10.3969/j.issn.1001-1528.2019.05.049
    [3]
    国家药典委员会. 中华人民共和国药典(2020年版)[M]. 北京: 中国医药科技出版社, 2020: 243.

    Chinese Pharmacopoeia Commission. Chinese pharmacopoeia (2020)[M]. Beijing: China Medical Science Press, 2020: 243.
    [4]
    刁石强, 李来好, 陈培基, 等. 马氏珍珠贝肉营养成分分析及评价[J]. 浙江海洋学院学报(自然科学版),2000(1):42−46. [DIAO S Q, LI L H, CHEN P J, et al. Analysis and evaluation of nutritional components of Pinctada martensii flesh[J]. Journal of Zhejiang Ocean University (Natural Science),2000(1):42−46.
    [5]
    唐晓宁, 吕应年, 吴斌华, 等. 海洋来源多肽生物活性及提纯方法研究进展[J]. 中国海洋药物,2021,40(1):49−58. [TANG X N, LV Y N, WU B H, et al. Advances in research on biological activity and purification methods of marine peptides[J]. Chinese Journal of Marine Drugs,2021,40(1):49−58.
    [6]
    朱蕴菡, 刘睿, 王令充, 等. 四角蛤蜊酶解肽抑制ACE活性与抗氧化活性研究[J]. 南京中医药大学学报,2013,29(2):172−174. [ZHU Y H, LIU R, WANG L C, et al. Study on ACE-inhibitory and antioxidant activities of Mactra veneriformis enzymatic hydrolysis peptides[J]. Journal of Nanjing University of Chinese Medicine,2013,29(2):172−174. doi: 10.3969/j.issn.1000-5005.2013.02.021
    [7]
    LIU P R, LAN X D, YASEEN M, et al. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from Pearl oyster(Pinctada fucata martensii) meat protein hydrolysate[J]. Marine Drugs,2019,17(8):463. doi: 10.3390/md17080463
    [8]
    蒲月华, 邓旗, 杨萍, 等. 珍珠贝多肽体外抗氧化活性的研究[J]. 食品科技,2016,41(11):124−128. [PU Y H, DENG Q, YANG P, et al. Antioxidant activities of Pearl oyster polypeptides in vitro[J]. Food Science and Technology,2016,41(11):124−128.
    [9]
    谢博, 傅红, 杨方. 生物活性肽的制备、分离纯化、鉴定以及构效关系研究进展[J]. 食品工业科技,2021,42(5):383−391. [XIE B, FU H, YANG F, et al. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Science and Technology of Food Industry,2021,42(5):383−391.
    [10]
    罗齐军, 郑选梅, 李红, 等. 酶制备牡蛎蛋白水解物的抗氧化活性和功能特性分析[J]. 现代农业科技,2020(15):224−226, 229. [LUO Q J, ZHENG X M, LI H, et al. Analysis of antioxidant activity and functional properties of protein hydrolysates from oyster treated by enzymes[J]. Modern Agricultural Science and Technology,2020(15):224−226, 229. doi: 10.3969/j.issn.1007-5739.2020.15.142
    [11]
    WANG Q K, LI W, HE Y H, et al. Novel antioxidative peptides from the protein hydrolysate of oysters(Crassostrea talienwhanensis)[J]. Food Chemistry,2014,145:991−996. doi: 10.1016/j.foodchem.2013.08.099
    [12]
    林海生, 廖津, 章超桦, 等. 华贵栉孔扇贝酶法制备α-葡萄糖苷酶抑制肽工艺优化[J]. 广东海洋大学学报,2020,40(5):97−104. [LIN H S, LIAO J, ZHANG C H, et al. Optimization of enzymatic preparation of α-glucosidase inhibitory peptides from Chlamys nobilis[J]. Journal of Zhanjiang Ocean University,2020,40(5):97−104. doi: 10.3969/j.issn.1673-9159.2020.05.012
    [13]
    PUJIATUTI D Y, GHOYATUL A M N, ALAMSJAH M A, et al. Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: A review[J]. Molecules,2019,24:2541. doi: 10.3390/molecules24142541
    [14]
    YANG D L, HAN Y J, CHEN L Z, et al. A macin identified from Venerupis philippinarum: Investigation on antibacterial activities and action mode[J]. Fish Shellfish Immunology,2019,92:897−904. doi: 10.1016/j.fsi.2019.07.031
    [15]
    LI Y, SADIQ F A, FU L, et al. Identification of angiotensin I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of razor clam Sinonovacula constricta[J]. Marine Drugs,2016:14.
    [16]
    曹廷锋, 刘金丽, 樊芳, 等. 红岛蛤蜊肉酶解工艺优化及其产物降血压功能研究[J]. 食品工业科技,2021,42(7):216−222. [CAO T F, LIU J L, FAN F, et al. Optimization of enzymatic hydrolysis of Hongdao clam and anti-hypertensive activity of the resulted products[J]. Science and Technology of Food Industry,2021,42(7):216−222.
    [17]
    韩青, 周丽杰, 李智博, 等. 酶法制备联合Plastein反应修饰牡蛎ACE抑制肽工艺优化[J]. 食品科学,2017,38(6):104−110. [HAN Q, ZHOU L J, LI Z B, et al. Optimized preparation of ACE inhibitory peptides from oyster by enzymatic hydrolysis coupled with plastein reaction[J]. Food Science,2017,38(6):104−110. doi: 10.7506/spkx1002-6630-201706016
    [18]
    乔美玲, 刘汉雄, 樊凤娇, 等. 贻贝盐溶蛋白特性分析及其ACE抑制肽的酶法制备[J]. 食品科学,2018,39(22):51−56. [QIAO M L, LIU H X, FAN F J, et al. Characterization of salt-soluble protein from Mytilus edulis and enzymatic preparation of ACE inhibitory peptides[J]. Food Science,2018,39(22):51−56. doi: 10.7506/spkx1002-6630-201822009
    [19]
    延海莹, 刘盟梦, 乔乐克, 等. 扇贝裙边活性肽的制备及其降血糖活性研究[J]. 食品工业,2018,39(3):117−121. [YAN H Y, LIU M M, QIAO L K, et al. Study on Scallop skirt active peptide and glucose tolerance activity[J]. The Food Industry,2018,39(3):117−121.
    [20]
    韩威, 郑丽杰, 陈露, 等. 杂色蛤酶解物的降糖活性初步评价及其物质基础研究[J]. 食品工业科技,2020,41(14):311−315, 322. [HAN W, ZHENG L J, CHEN L, et al. Preliminary evaluation of hypoglycemic activity and its material basis of Ruditapes philippinarum hydrolysate[J]. Science and Technology of Food Industry,2020,41(14):311−315, 322.
    [21]
    YAN F F, LI N, YUE Y X, et al. Screening for potential novel probiotics with dipeptidyl peptidase IV-inhibiting activity for type 2 diabetes attenuation in vitro and in vivo[J]. Front Microbiology,2019,10:2855.
    [22]
    HERNROTH B. The influence of temperature and dose on antibacterial peptide response against lipopolysaccharide in the blue mussel, Mytilus edulis[J]. Fish Shellfish Immunology,2003,14(1):25−37. doi: 10.1006/fsim.2002.0415
    [23]
    刘睿, 蔡朔, 赵珂璇, 等. 鹿皮胶Ⅰ型胶原赖氨酸位点的羟基化与O-糖基化修饰分析[J]. 中国中药杂志,2020:1−9. [LIU R, CAI S, ZHAO K X, et al. Analysis of hydroxylation and O-glycosylation on lysine sites in deer-hide gelatin[J]. China Journal of Chinese Materia Medica,2020:1−9.
    [24]
    李思维, 卫倩倩, 宋宵, 等. 党参多糖的抗氧化及降糖活性研究[J]. 临床医学研究与实践,2020,5(32):8−11. [LI S W, WEI Q Q, SONG X, et al. Study on antioxidant and hypoglycemic activities of Codonopsis pilosula polysaccharide[J]. Clinical Research and Practice,2020,5(32):8−11.
    [25]
    章常华, 薛亚楠, 王子文, 等. 黄芩-黄连药对不同配比对HepG2细胞葡萄糖消耗量的影响[J]. 中华中医药杂志,2020,35(10):5170−5174. [ZHANG C H, XUE Y N, WANG Z W, et al. Effects of couplet medicines of Scutellaria radix and Coptidis rhizoma on the glucose consumption of HepG2 cells in different ratios[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2020,35(10):5170−5174.
    [26]
    SHAKOOR H, ABDELFATTAH F, ALBADI K, et al. Inhibition of digestive enzyme and stimulation of human liver cells (HepG2) glucose uptake by date seeds extract[J]. Evidence-based Complementary and Alternative Medicine,2020:4290702.
    [27]
    魏萍, 薛春苗, 潘霖, 等. 甲基莲心碱对胰岛素抵抗的HepG2细胞降糖的影响[J]. 临床和实验医学杂志,2020,19(12):1283−1286. [WEI P, XUE C M, PAN L, et al. Effects of neferine on hypoglycemia of insulin-resistant HepG2 cells[J]. Journal of Clinical and Experimental Medicine,2020,19(12):1283−1286. doi: 10.3969/j.issn.1671-4695.2020.12.015
    [28]
    ZHANG C Y, GAO S, ZHANG C, et al. Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models[J]. European Food Research and Technology,2020,246(1):179−191. doi: 10.1007/s00217-019-03399-6
    [29]
    BAO Y F, XIAO J B, WENG Z B, et al. A phenolic glycoside from Moringa oleifera Lam improves the carbohydrate and lipid metabolisms through AMPK in db/db mice[J]. Food Chemistry,2020,311:125948. doi: 10.1016/j.foodchem.2019.125948
    [30]
    NONGONIERMA A B, FITZGERALD R J. Features of dipeptidyl peptidase IV(DPP-IV) inhibitory peptides from dietary proteins[J]. Food Biochemistry,2019,43(1):e12451. doi: 10.1111/jfbc.12451
    [31]
    TYAGI P, PECHENOV S, ANAND S J. Oral peptide delivery: Translational challenges due to physiological effects[J]. Journal of Controlled Release,2018,287:167−176. doi: 10.1016/j.jconrel.2018.08.032
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (235) PDF downloads (19) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return