TIAN Runmiao, LUO Xiaoyu, XU Guojuan, et al. Study on the Biodegradability of Konjac Glucomannan/Curdlan Composite Aerogel[J]. Science and Technology of Food Industry, 2023, 44(7): 143−151. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060095.
Citation: TIAN Runmiao, LUO Xiaoyu, XU Guojuan, et al. Study on the Biodegradability of Konjac Glucomannan/Curdlan Composite Aerogel[J]. Science and Technology of Food Industry, 2023, 44(7): 143−151. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060095.

Study on the Biodegradability of Konjac Glucomannan/Curdlan Composite Aerogel

More Information
  • Received Date: June 12, 2022
  • Available Online: February 06, 2023
  • In this paper, konjac glucomannan (KGM) and curdlan (CUD) were used to prepare biomass aerogels with different mass ratios (KGM/CUD, K1C0.6, K1C0.9, K1C1.2) based on sol-gel and vacuum freeze-drying methods. The four dominant strains of Aspergillus niger (Fen), Penicillium expansum (L), P. italicum (B3) and Bacillus sp. (WE-3) were used to degrade the composite aerogel, and the degradation morphology, weight change, microscopic morphology, molecular change, thermal stability and strain growth adaptability were investigated. The results showed that the aerogels collapsed and shrinking with abundant thallus on the surface. During the degradation process of the aerogel, the water from the environment was absorbed by the hygroscopicity of KGM, and the degradation process would be accelerated. FTIR showed that the long chains of polysaccharides were degraded into short chains after degradation, and no new groups were produced. SEM pictures expressed that the porous structure of aerogel was destroyed and the three-dimensional network structure collapsed. DSC analysis showed that the thermal stability of aerogel significantly decreased. The fungi Fen, L and B3 were suitable for the growth of KC aerogel environment, while the bacteria WE-3 struggled to adapt. This research was expected to provide theoretical reference for the biodegradation of polysaccharide composites.
  • [1]
    ZHI D D, LI T, LI J Z, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B,2021,211:108642. doi: 10.1016/j.compositesb.2021.108642
    [2]
    DE OLIVEIRA J P, BRUNI G P, EL HALAL S L M, et al. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging[J]. International Journal of Biological Macromolecules,2018,124:175−184.
    [3]
    VERONOVSKI A, TKALEC G, KNEZ Ž, et al. Characterization of biodegradable pectin aerogels and their potential use as drug carriers[J]. Carbohydrate Polymers,2014,113:272−278. doi: 10.1016/j.carbpol.2014.06.054
    [4]
    YI L F, YANG J Y, FANG X, et al. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water[J]. Journal of Hazardous Materials,2020,385(C):121507.
    [5]
    MOHAMMAD P, RAFFAELE M. Protein nanofibrils for next generation sustainable water purification[J]. Nature Communications,2021,12(1):3248. doi: 10.1038/s41467-021-23388-2
    [6]
    KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741.
    [7]
    WEI G, ZHANG J M, USUELLI M, et al. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis[J]. Progress in Materials Science,2021,125:100915.
    [8]
    WANG Z H, SHEN D K, WU C F, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry,2018,20(22):5031−5057. doi: 10.1039/C8GC01748D
    [9]
    LIU Q Z, YAN K, CHEN J H, et al. Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation[J]. Aggregate,2021,2(2):e30.
    [10]
    GARCÍA-GONZÁLEZ C A, ALNAIEF M, SMIRNOVA I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems[J]. Carbohydrate Polymers,2011,86(4):1425−1438. doi: 10.1016/j.carbpol.2011.06.066
    [11]
    SHI W, YERN C C, CHENG H C. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review[J]. Carbohydrate Polymers,2020,231(10):115744.
    [12]
    NEŠIĆ A, GORDIĆ M, DAVIDOVIĆ S, et al. Pectin-based nanocomposite aerogels for potential insulated food packaging application[J]. Carbohydrate Polymers,2018,195(4):128−135.
    [13]
    孙小华, 周丹, 柯炜昌, 等. 植物多糖干凝胶的制备及其力学性能[J]. 功能高分子学报,2012,25(2):195−201. [SUN Xiaohua, ZHOU Dan, KE Weichang, et al. Preparation and mechanical properties of polysaccharide cryogel[J]. Journal of Functional Polymers,2012,25(2):195−201.
    [14]
    ZHANG R R, EDGAR K J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan[J]. Biomacromolecules,2014,15(4):1079−1096. doi: 10.1021/bm500038g
    [15]
    WANG Y X, WU K, XIAO M, et al. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw[J]. Carbohydrate Polymers,2018,197:284−291. doi: 10.1016/j.carbpol.2018.06.009
    [16]
    李静, 李明源, 王继莲, 等. 纤维素的微生物降解研究进展[J]. 食品工业科技,2022,43(9):396−403. [LI Jing, LI Mingyuan, WANG Jilian, et al. Research progress on microbial degradation of cellulose[J]. Science and Technology of Food Industry,2022,43(9):396−403.
    [17]
    姜发堂. 高吸水性葡甘聚糖接枝共聚物的制备及其性能研究[D]. 武汉: 华中农业大学, 2007

    JIANG Fatang. Preparation and characterization of the superabsorbent polymer from konjac glucomannan[D]. Wuan: Huazhong Agricultural University, 2007.
    [18]
    WANG W L, FANG Y, NI X W, et al. Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara[J]. Carbohydrate Polymers,2019,224(C):115129.
    [19]
    李建树, 孙丽坤, 韩向敏, 等. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J]. 甘肃农业大学学报,2020,55(3):29−37. [LI Jianshu, SUN Likun, HAN Xiangmin, et al. Screening, identification and enzyme activity determination of high temperature cellulose degrading microorganism[J]. Journal of Gansu Agricultural University,2020,55(3):29−37.
    [20]
    WU K, FANG Y, WU H X, et al. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions[J]. International Journal of Biological Macromolecules,2020,166:1499−1507.
    [21]
    SATORU T, ARATA K, YOSHIHIRO T, et al. Aldehyde approach to hydrophobic modification of chitosan aerogels[J]. Biomacromolecules,2017,18(7):2172−2178. doi: 10.1021/acs.biomac.7b00562
    [22]
    杨靖, 陈杰. 甲基修饰二氧化硅气凝胶的红外光谱和热分析研究[J]. 西安交通大学学报,2009,43(1):114−118. [YANG Jing, CHEN Jie. Fourier transform infrared spectroscopy and thermal analysis of silica aerogel modified by methyl groups[J]. Journal of Xi′an Jiaotong University,2009,43(1):114−118. doi: 10.3321/j.issn:0253-987X.2009.01.025
    [23]
    曹庆龙, 雷桥, 吴浩, 等. 影响普鲁兰多糖气凝胶性能的工艺参数[J]. 食品与发酵工业,2020,46(23):108−115. [CAO Qinglong, LEI Qiao, WU Hao, et al. Effect of process parameters on pullulan aerogel properties[J]. Food and Fermentation Industries,2020,46(23):108−115.
    [24]
    侯海峰, 李群伟, 李晓梅. 温度和湿度对黄绿青霉菌生长和产毒的影响[J]. 中国地方病防治杂志,2010,25(2):104−106. [HOU Haifeng, LI Qunwei, LI Xiaomei. Effect of temperature and water activity on growth and toxin production of Penicillium citreoviride[J]. Chinese Journal of Control Endemic Disease,2010,25(2):104−106.
    [25]
    MOMTAZ M, CHEN J. High-performance colorimetric humidity sensors based on konjac glucomannan[J]. ACS Applied Materials & Interfaces,2020,12(48):54104−54116.
    [26]
    曹庆龙, 雷桥, 吴浩, 等. 乳清分离蛋白-普鲁兰多糖复合气凝胶的制备及性能优化[J]. 食品与发酵工业,2021,47(16):181−187. [CAO Qinglong, LEI Qiao, WU Hao, et al. Preparation and performance optimization of whey protein isolate pullulan composite aerogel[J]. Food and Fermentation Industries,2021,47(16):181−187.
    [27]
    刘璐, 庞杰. 魔芋葡甘聚糖复合凝胶网络结构的研究进展[J]. 粮油食品科技,2021,29(2):129−134. [LIU Lu, PANG Jie. Research progress on material and composite structure of konjac glucomannan composite gel[J]. Science and Technology of Cereals, Oils and Foods,2021,29(2):129−134.
    [28]
    周丹, 柯炜昌, 陈义坤, 等. 魔芋葡甘聚糖基干凝胶的制备与性能表征[J]. 功能材料,2013,44(S1):161−165. [ZHOU Dan, KE Weichang, CHEN Yikun, et al. Preparation and characterization of konjac glucomannan based dry gel[J]. Functional Materials,2013,44(S1):161−165.
    [29]
    KACMAREK S B, SIONKOWSKA M M, MAZUR O, et al. The role of microorganisms in biodegradation of chitosan/tannic acid materials[J]. International Journal of Biological Macromolecules,2021,184:584−592. doi: 10.1016/j.ijbiomac.2021.06.133
    [30]
    CHEN K, TIAN Z H, HE H, et al. Bacillus species as potential biocontrol agents against citrus diseases[J]. Biological Control,2020,151:104419. doi: 10.1016/j.biocontrol.2020.104419
    [31]
    蒋明峰, 肖满, 倪学文, 等. 魔芋葡甘聚糖与可得然胶的相互作用[J]. 食品科学,2016,37(19):54−58. [JIANG Mingfeng, XIAO Man, NI Xuewen, et al. Interactions between konjac glucomannan and curdlan[J]. Food Science,2016,37(19):54−58. doi: 10.7506/spkx1002-6630-201619009
    [32]
    CHEN Y L, SONG C Z, LÜ Y K, et al. Konjac glucomannan/kappa carrageenan interpenetrating network hydrogels with enhanced mechanical strength and excellent self-healing capability[J]. Polymer,2019,184(C):121913.
    [33]
    吴佳煜, 杨丹, 龚静妮, 等. 魔芋葡甘聚糖/κ-卡拉胶复合凝胶制备条件的优化[J]. 食品工业科技,2018,39(15):171−175, 188. [WU Jiayu, YANG Dan, GONG Jingni, et al. Optimization of preparation conditions of konjac glucomannan/κ-carrageenan composite gel[J]. Science and Technology of Food Industry,2018,39(15):171−175, 188.
    [34]
    魏晓晓, 崔芃, 王大海, 等. 红外光谱法快速鉴别可降解一次性塑料制品[J]. 分析仪器,2022,36(1):36−41. [WEI Xiaoxiao, CUI Fan, WANG Dahai, et al. Rapid detection of composition of biodegradable plastic products by infrared spectroscopy[J]. Analytical Instrumentation,2022,36(1):36−41.
    [35]
    吴迪, 王旭升, 于特, 等. β-葡聚糖酶降解黑木耳多糖工艺研究[J]. 食品研究与开发,2022,43(6):130−135. [WU Di, WANG Xusheng, YU Te, et al. Optimization of β-glucanase degradation of Auricularia auricula polysaccharides[J]. Food Research and Development,2022,43(6):130−135.
    [36]
    沈鸿强, 尹屹梅, 张洪斌. 甲基纤维素(MC)疏水作用的电化学研究[J]. 化学学报,2005,63(17):1621−1625, 1550. [SHEN Hongqiang, YIN Qimei, ZHANG Hongbin. An electrochemical study of the hydrophobic interaction of methylcellulose[J]. Acta Chimica Sinica,2005,63(17):1621−1625, 1550. doi: 10.3321/j.issn:0567-7351.2005.17.013
    [37]
    FANG Y, WANG W L, QIAN H, et al. Regular film property changes of konjac glucomannan/mung bean starch blend films[J]. Starch-Stä rke,2020,72(5-6):1900149.
    [38]
    王唯, 王浩, 匡映, 等. 魔芋葡甘聚糖-明胶-淀粉气凝胶过滤材料的结构与性能研究[J]. 食品工业科技,2021,42(15):48−55. [WANG Wei, WANG Hao, KUANG Ying, et al. Study on structure and properties of konjac glucomannan-gelatin-starch aerogels as filtration materials[J]. Science and Technology of Food Industry,2021,42(15):48−55.
    [39]
    胡紫微, 李至敏, 张梦洁, 等. 指状青霉草酰乙酸水解酶的结构特征与原核表达分析[J]. 江西农业学报,2021,33(5):31−37. [HU Ziwei, LI Zhimin, ZHANG Mengjie, et al. Analysis of structural characteristics and prokaryotic expression of oxaloacetate hydrolase from Penicillium digitatum[J]. Acta Agriculturae Jiangxi,2021,33(5):31−37.
    [40]
    钱鑫. 指状青霉侵染采后柑橘的机制研究[D]. 镇江: 江苏大学, 2020

    QIAN Xin. Study on the mechanism of Penicillium digitatum infecting postharvest citrus[D]. Zhenjiang: Jiangsu University, 2020.
    [41]
    吴鹏, 姜坤, 刘丽, 等. 黑曲霉HS-5高产β-葡聚糖酶培养基配方的优化[J]. 中国酿造,2016,35(8):83−86. [WU Peng, JIANG Kun, LIU Li, et al. Optimization of medium formula for β-glucanase producing Aspergillus niger[J]. China Brewing,2016,35(8):83−86.
  • Cited by

    Periodical cited type(8)

    1. 杜彦锋,邓晓东,赵志伟,魏玉颖,蒋璐遥,燕文柏,黄德莲,张薇薇. 我国石斛质量标准建立研究进展. 食品与发酵科技. 2025(01): 142-148 .
    2. 高敏,王晴,王欣兰,乔雪婷,赵惠茹. 低共熔溶剂提取黄酮类化合物的研究进展. 化学工程师. 2024(02): 55-58 .
    3. 周美,廖秀,李立郎,王瑜,安巧,罗鸣,王道平. 铁皮石斛酵素制备工艺及其免疫活性研究. 食品科技. 2024(01): 94-102 .
    4. 陈媛,陈苗苗,杨善彬,刘冰,李霄,蒲道俊. 低共熔溶剂优化芹菜中芹菜素提取工艺研究. 广东化工. 2024(05): 36-40 .
    5. 乔雪婷,李敏琦,许鑫玉,赵惠茹. 低共熔溶剂提取植物多糖的研究进展. 化学工程师. 2024(06): 60-63 .
    6. 王清,周舟,刘涛,李晓星,郑雪珂,桑大席. 基于低共熔溶剂的南瓜多糖超声辅助提取工艺及其动力学研究. 粮食与油脂. 2024(07): 70-75+132 .
    7. 禹晓梅,周忠云. 超声辅助低共熔溶剂提取韩信草总黄酮的工艺优化. 天然产物研究与开发. 2024(11): 1910-1919 .
    8. 吴均,杨碧文,赵珮,马婧秋,王晓静,黄越. 桑叶多糖提取工艺优化及体外抗氧化活性研究. 食品与机械. 2024(12): 170-177 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (218) PDF downloads (23) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return