Citation: | TIAN Runmiao, LUO Xiaoyu, XU Guojuan, et al. Study on the Biodegradability of Konjac Glucomannan/Curdlan Composite Aerogel[J]. Science and Technology of Food Industry, 2023, 44(7): 143−151. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060095. |
[1] |
ZHI D D, LI T, LI J Z, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B,2021,211:108642. doi: 10.1016/j.compositesb.2021.108642
|
[2] |
DE OLIVEIRA J P, BRUNI G P, EL HALAL S L M, et al. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging[J]. International Journal of Biological Macromolecules,2018,124:175−184.
|
[3] |
VERONOVSKI A, TKALEC G, KNEZ Ž, et al. Characterization of biodegradable pectin aerogels and their potential use as drug carriers[J]. Carbohydrate Polymers,2014,113:272−278. doi: 10.1016/j.carbpol.2014.06.054
|
[4] |
YI L F, YANG J Y, FANG X, et al. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water[J]. Journal of Hazardous Materials,2020,385(C):121507.
|
[5] |
MOHAMMAD P, RAFFAELE M. Protein nanofibrils for next generation sustainable water purification[J]. Nature Communications,2021,12(1):3248. doi: 10.1038/s41467-021-23388-2
|
[6] |
KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741.
|
[7] |
WEI G, ZHANG J M, USUELLI M, et al. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis[J]. Progress in Materials Science,2021,125:100915.
|
[8] |
WANG Z H, SHEN D K, WU C F, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry,2018,20(22):5031−5057. doi: 10.1039/C8GC01748D
|
[9] |
LIU Q Z, YAN K, CHEN J H, et al. Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation[J]. Aggregate,2021,2(2):e30.
|
[10] |
GARCÍA-GONZÁLEZ C A, ALNAIEF M, SMIRNOVA I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems[J]. Carbohydrate Polymers,2011,86(4):1425−1438. doi: 10.1016/j.carbpol.2011.06.066
|
[11] |
SHI W, YERN C C, CHENG H C. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review[J]. Carbohydrate Polymers,2020,231(10):115744.
|
[12] |
NEŠIĆ A, GORDIĆ M, DAVIDOVIĆ S, et al. Pectin-based nanocomposite aerogels for potential insulated food packaging application[J]. Carbohydrate Polymers,2018,195(4):128−135.
|
[13] |
孙小华, 周丹, 柯炜昌, 等. 植物多糖干凝胶的制备及其力学性能[J]. 功能高分子学报,2012,25(2):195−201. [SUN Xiaohua, ZHOU Dan, KE Weichang, et al. Preparation and mechanical properties of polysaccharide cryogel[J]. Journal of Functional Polymers,2012,25(2):195−201.
|
[14] |
ZHANG R R, EDGAR K J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan[J]. Biomacromolecules,2014,15(4):1079−1096. doi: 10.1021/bm500038g
|
[15] |
WANG Y X, WU K, XIAO M, et al. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw[J]. Carbohydrate Polymers,2018,197:284−291. doi: 10.1016/j.carbpol.2018.06.009
|
[16] |
李静, 李明源, 王继莲, 等. 纤维素的微生物降解研究进展[J]. 食品工业科技,2022,43(9):396−403. [LI Jing, LI Mingyuan, WANG Jilian, et al. Research progress on microbial degradation of cellulose[J]. Science and Technology of Food Industry,2022,43(9):396−403.
|
[17] |
姜发堂. 高吸水性葡甘聚糖接枝共聚物的制备及其性能研究[D]. 武汉: 华中农业大学, 2007
JIANG Fatang. Preparation and characterization of the superabsorbent polymer from konjac glucomannan[D]. Wuan: Huazhong Agricultural University, 2007.
|
[18] |
WANG W L, FANG Y, NI X W, et al. Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara[J]. Carbohydrate Polymers,2019,224(C):115129.
|
[19] |
李建树, 孙丽坤, 韩向敏, 等. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J]. 甘肃农业大学学报,2020,55(3):29−37. [LI Jianshu, SUN Likun, HAN Xiangmin, et al. Screening, identification and enzyme activity determination of high temperature cellulose degrading microorganism[J]. Journal of Gansu Agricultural University,2020,55(3):29−37.
|
[20] |
WU K, FANG Y, WU H X, et al. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions[J]. International Journal of Biological Macromolecules,2020,166:1499−1507.
|
[21] |
SATORU T, ARATA K, YOSHIHIRO T, et al. Aldehyde approach to hydrophobic modification of chitosan aerogels[J]. Biomacromolecules,2017,18(7):2172−2178. doi: 10.1021/acs.biomac.7b00562
|
[22] |
杨靖, 陈杰. 甲基修饰二氧化硅气凝胶的红外光谱和热分析研究[J]. 西安交通大学学报,2009,43(1):114−118. [YANG Jing, CHEN Jie. Fourier transform infrared spectroscopy and thermal analysis of silica aerogel modified by methyl groups[J]. Journal of Xi′an Jiaotong University,2009,43(1):114−118. doi: 10.3321/j.issn:0253-987X.2009.01.025
|
[23] |
曹庆龙, 雷桥, 吴浩, 等. 影响普鲁兰多糖气凝胶性能的工艺参数[J]. 食品与发酵工业,2020,46(23):108−115. [CAO Qinglong, LEI Qiao, WU Hao, et al. Effect of process parameters on pullulan aerogel properties[J]. Food and Fermentation Industries,2020,46(23):108−115.
|
[24] |
侯海峰, 李群伟, 李晓梅. 温度和湿度对黄绿青霉菌生长和产毒的影响[J]. 中国地方病防治杂志,2010,25(2):104−106. [HOU Haifeng, LI Qunwei, LI Xiaomei. Effect of temperature and water activity on growth and toxin production of Penicillium citreoviride[J]. Chinese Journal of Control Endemic Disease,2010,25(2):104−106.
|
[25] |
MOMTAZ M, CHEN J. High-performance colorimetric humidity sensors based on konjac glucomannan[J]. ACS Applied Materials & Interfaces,2020,12(48):54104−54116.
|
[26] |
曹庆龙, 雷桥, 吴浩, 等. 乳清分离蛋白-普鲁兰多糖复合气凝胶的制备及性能优化[J]. 食品与发酵工业,2021,47(16):181−187. [CAO Qinglong, LEI Qiao, WU Hao, et al. Preparation and performance optimization of whey protein isolate pullulan composite aerogel[J]. Food and Fermentation Industries,2021,47(16):181−187.
|
[27] |
刘璐, 庞杰. 魔芋葡甘聚糖复合凝胶网络结构的研究进展[J]. 粮油食品科技,2021,29(2):129−134. [LIU Lu, PANG Jie. Research progress on material and composite structure of konjac glucomannan composite gel[J]. Science and Technology of Cereals, Oils and Foods,2021,29(2):129−134.
|
[28] |
周丹, 柯炜昌, 陈义坤, 等. 魔芋葡甘聚糖基干凝胶的制备与性能表征[J]. 功能材料,2013,44(S1):161−165. [ZHOU Dan, KE Weichang, CHEN Yikun, et al. Preparation and characterization of konjac glucomannan based dry gel[J]. Functional Materials,2013,44(S1):161−165.
|
[29] |
KACMAREK S B, SIONKOWSKA M M, MAZUR O, et al. The role of microorganisms in biodegradation of chitosan/tannic acid materials[J]. International Journal of Biological Macromolecules,2021,184:584−592. doi: 10.1016/j.ijbiomac.2021.06.133
|
[30] |
CHEN K, TIAN Z H, HE H, et al. Bacillus species as potential biocontrol agents against citrus diseases[J]. Biological Control,2020,151:104419. doi: 10.1016/j.biocontrol.2020.104419
|
[31] |
蒋明峰, 肖满, 倪学文, 等. 魔芋葡甘聚糖与可得然胶的相互作用[J]. 食品科学,2016,37(19):54−58. [JIANG Mingfeng, XIAO Man, NI Xuewen, et al. Interactions between konjac glucomannan and curdlan[J]. Food Science,2016,37(19):54−58. doi: 10.7506/spkx1002-6630-201619009
|
[32] |
CHEN Y L, SONG C Z, LÜ Y K, et al. Konjac glucomannan/kappa carrageenan interpenetrating network hydrogels with enhanced mechanical strength and excellent self-healing capability[J]. Polymer,2019,184(C):121913.
|
[33] |
吴佳煜, 杨丹, 龚静妮, 等. 魔芋葡甘聚糖/κ-卡拉胶复合凝胶制备条件的优化[J]. 食品工业科技,2018,39(15):171−175, 188. [WU Jiayu, YANG Dan, GONG Jingni, et al. Optimization of preparation conditions of konjac glucomannan/κ-carrageenan composite gel[J]. Science and Technology of Food Industry,2018,39(15):171−175, 188.
|
[34] |
魏晓晓, 崔芃, 王大海, 等. 红外光谱法快速鉴别可降解一次性塑料制品[J]. 分析仪器,2022,36(1):36−41. [WEI Xiaoxiao, CUI Fan, WANG Dahai, et al. Rapid detection of composition of biodegradable plastic products by infrared spectroscopy[J]. Analytical Instrumentation,2022,36(1):36−41.
|
[35] |
吴迪, 王旭升, 于特, 等. β-葡聚糖酶降解黑木耳多糖工艺研究[J]. 食品研究与开发,2022,43(6):130−135. [WU Di, WANG Xusheng, YU Te, et al. Optimization of β-glucanase degradation of Auricularia auricula polysaccharides[J]. Food Research and Development,2022,43(6):130−135.
|
[36] |
沈鸿强, 尹屹梅, 张洪斌. 甲基纤维素(MC)疏水作用的电化学研究[J]. 化学学报,2005,63(17):1621−1625, 1550. [SHEN Hongqiang, YIN Qimei, ZHANG Hongbin. An electrochemical study of the hydrophobic interaction of methylcellulose[J]. Acta Chimica Sinica,2005,63(17):1621−1625, 1550. doi: 10.3321/j.issn:0567-7351.2005.17.013
|
[37] |
FANG Y, WANG W L, QIAN H, et al. Regular film property changes of konjac glucomannan/mung bean starch blend films[J]. Starch-Stä rke,2020,72(5-6):1900149.
|
[38] |
王唯, 王浩, 匡映, 等. 魔芋葡甘聚糖-明胶-淀粉气凝胶过滤材料的结构与性能研究[J]. 食品工业科技,2021,42(15):48−55. [WANG Wei, WANG Hao, KUANG Ying, et al. Study on structure and properties of konjac glucomannan-gelatin-starch aerogels as filtration materials[J]. Science and Technology of Food Industry,2021,42(15):48−55.
|
[39] |
胡紫微, 李至敏, 张梦洁, 等. 指状青霉草酰乙酸水解酶的结构特征与原核表达分析[J]. 江西农业学报,2021,33(5):31−37. [HU Ziwei, LI Zhimin, ZHANG Mengjie, et al. Analysis of structural characteristics and prokaryotic expression of oxaloacetate hydrolase from Penicillium digitatum[J]. Acta Agriculturae Jiangxi,2021,33(5):31−37.
|
[40] |
钱鑫. 指状青霉侵染采后柑橘的机制研究[D]. 镇江: 江苏大学, 2020
QIAN Xin. Study on the mechanism of Penicillium digitatum infecting postharvest citrus[D]. Zhenjiang: Jiangsu University, 2020.
|
[41] |
吴鹏, 姜坤, 刘丽, 等. 黑曲霉HS-5高产β-葡聚糖酶培养基配方的优化[J]. 中国酿造,2016,35(8):83−86. [WU Peng, JIANG Kun, LIU Li, et al. Optimization of medium formula for β-glucanase producing Aspergillus niger[J]. China Brewing,2016,35(8):83−86.
|