MA Jing, ZHANG Linlin, CHAI Shatuo, et al. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122−128. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080045.
Citation: MA Jing, ZHANG Linlin, CHAI Shatuo, et al. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122−128. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080045.

Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology

More Information
  • Received Date: August 15, 2020
  • Available Online: March 15, 2021
  • This study aimed to explore the composition and diversity of microorganisms in raw milk of yak and cattle-yak. The 16S rDNA V4 region of those two kinds of raw milk was sequencing by high-throughput technology and comparative analysis of bioinformatics.The results showed that a total of 5516 OTUs were obtained with 97% similarity level.The comparison of microbial phylum levels shows that Proteobacteria, Firmicutes and Actinobacteria were the common dominant bacteria phylum for yak milk and cattle-yak milk.The relative abundances of the three Microbes in the yak milk were 29.80%, 35.99% and 8.41%, respectively. The relative abundances of the three microbes in the cattle-yakmilk were 45.36%, 25.79% and 7.39%, respectively. At the genus level, the dominant genus of yak milk was unidentified-Cyanobacteria, and the relative abundance was 9.32%. The dominant genus of cattle-yak milk was Bradyrhizobium, which accounts for 11.53%. At the species level, Bradyrhizobium elkanii and Kosakonia oryzae were the dominant strains in milk of yak and cattle-yak. The two strains accounted for 2.42% and 3.36% in yak milk, respectively.And the two types of bacteria account for 11.53% and 5.53% of the milk in the cattle-yak, respectively. Alpha diversity analysis shows that there are significant differences between different milk richness estimates (P<0.05).And the richness and diversity ofcattle-yak milk was higher.
  • [1]
    Li Z, Jiang M. Metabolomic profiles in yak mammary gland tissue during the lactation cycle[J]. PLoS One,2019,14(7):e0219220. doi: 10.1371/journal.pone.0219220
    [2]
    阎萍, 潘和平. 牦牛乳业的开发与利用[J]. 中国乳业,2004(7):10−12. doi: 10.3969/j.issn.1671-4393.2004.07.003
    [3]
    和占星, 王向东, 黄梅芬, 等. 中甸牦牛、迪庆黄牛和犏牛的乳的主要营养成分比较[J]. 食品与生物技术学报,2015,34(12):1294−1301. doi: 10.3969/j.issn.1673-1689.2015.12.010
    [4]
    Li H, Ma Y, Li Q, et al. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk[J]. International Journal of Molecular Sciences,2011,12(8):4885−4895. doi: 10.3390/ijms12084885
    [5]
    李贤, 李齐发, 赵兴波, 等. 牦牛和犏牛Dmc1基因序列分析及睾丸组织转录水平研究[J]. 中国农业科学,2010,43(15):3221−3229. doi: 10.3864/j.issn.0578-1752.2010.15.021
    [6]
    张莉, 张岩, 李键, 等. 牦牛乳与犏牛乳脂肪酸组分比较分析[J]. 黑龙江畜牧兽医,2017(10):187−189.
    [7]
    魏雅萍, 徐惊涛, 童子保, 等. 青海高寒牧区犏牛挤乳量及乳成分分析[J]. 中国牛业科学,2008(5):31−34. doi: 10.3969/j.issn.1001-9111.2008.05.008
    [8]
    文志平, 郭淑珍, 牛小莹, 等. 不同饲料配方对犏牛乳营养成分的影响[J]. 畜牧兽医杂志,2017,36(5):28−30. doi: 10.3969/j.issn.1004-6704.2017.05.009
    [9]
    Jarocki P, ElwiraKomoń-Janczara, Glibowska A, et al. Molecular routes to specific identification of the Lactobacillus casei group at the species, subspecies and strain level[J]. International Journal of Molecular ences,2020,21(8):E2694.
    [10]
    Lisa Q, Orla O, Catherine S, et al. The complex microbiota of raw milk[J]. Fems Microbiology Reviews,2013,37(5):664−698. doi: 10.1111/1574-6976.12030
    [11]
    李万财, 尚海忠, 李俊花, 等. 天峻地区牦牛乳中微生物含量的测定[J]. 中国动物检疫,2002(3):36. doi: 10.3969/j.issn.1005-944X.2002.03.034
    [12]
    肜豪峰, 谈重芳, 李宗伟, 等. 青海湖区牦牛乳制品的微生物区系和营养成分的初步研究[J]. 食品工业科技,2008(7):225−227.
    [13]
    丁武蓉. 青藏高原传统发酵牦牛奶中乳酸菌多样性及其益生功能研究[D]. 兰州大学, 2014.
    [14]
    刘怡萱, 许国琪, 曹鹏熙, 等. 基于16S rRNA高通量测序的西藏农、牧区牦牛酸奶菌群多样性分析[J]. 食品科学,2020,41(18):92−97. doi: 10.7506/spkx1002-6630-20190714-180
    [15]
    Singh J. Inhibition of growth of spoilage microorganisms by Streptococcus thermophilus and Lactobacillus acidophilus in cow, buffalo and goat milk[J]. Journal of Food Protection,1983,46(6):497−498. doi: 10.4315/0362-028X-46.6.497
    [16]
    Woo P C, Lau S K, Teng J L, et al. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories[J]. Clinical Microbiology and Infection,2008,14(10):908−934. doi: 10.1111/j.1469-0691.2008.02070.x
    [17]
    Han Z, Sun J, Lv A, et al. Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: A case in the koi carp, Cyprinuscarpio var. Koi[J]. Microbiologyopen,2019,8(1):e00626. doi: 10.1002/mbo3.626
    [18]
    Poirier S, Rué O, Coeuret G, et al. Detection of an amplification bias associated to Leuconostocaceae family with a universal primer routinely used for monitoring microbial community structures within food products[J]. BMC Research Notes,2018,11(1):802. doi: 10.1186/s13104-018-3908-2
    [19]
    Tanca A, Fraumene C, Manghina V, et al. Diversity and functions of the sheep faecalmicrobiota: A multi-omic characterization[J]. Microbial Biotechnology,2017,10(3):541−554. doi: 10.1111/1751-7915.12462
    [20]
    贾宏信, 苏米亚, 陈文亮, 等. 乳制品对代谢综合征预防作用的研究进展[J]. 乳业科学与技术,2020,43(1):45−49.
    [21]
    Morton J M, Auldist M J, Douglas M L, et al. Milk protein concentration, estimated breeding value for fertility, and reproductive performance in lactating dairy cows[J]. Journal of Dairy science,2017,100(7):5850−5862. doi: 10.3168/jds.2016-11273
    [22]
    Albonico F, Barelli C, Albanese D, et al. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet[J]. PLoS One,2020,15(8):e0237262. doi: 10.1371/journal.pone.0237262
    [23]
    吴周林, 左玲, 徐弘扬, 等. 犏牛杂种优势研究进展[J]. 当代畜牧,2018(6):23−25.
    [24]
    王斌星, 许晴, 郭春华, 等. 舍饲牦牛和犏牛生产性能、屠宰性能、养分表观消化率、瘤胃发酵参数和血清生化指标的比较研究[J]. 黑龙江畜牧兽医,2016(23):5−9.
    [25]
    张敏, 张艳, 黄丽丽, 等. 基于16S rDNA高通量测序方法比较新疆西北部地区乳品中微生物的多样性[J]. 食品科学,2017,38(20):27−33. doi: 10.7506/spkx1002-6630-201720005
    [26]
    Manasa J S. Role of the normal gut microbiota[J]. World Journal of Gastroenterology,2015(29):8787−8803.
    [27]
    Chung L K, Bliska J B. Yersinia versus host immunity: How a pathogen evades or triggers a protective response[J]. Current Opinion in Microbiology,2016,29:56−62. doi: 10.1016/j.mib.2015.11.001
    [28]
    Odyniec M, Stenzel T, Awreszuk D, et al. Bioserotypes, virulence markers, and antimicrobial susceptibility of Yersinia enterocolitica Strains isolated from free-living birds[J]. BioMed Research International,2020,2020(3−4):1−6.
    [29]
    Ellie J C, Goldstein, Kerin L, et al. Lactobacillus species: Taxonomic complexity and controversial susceptibilities[J]. Clinical infectious diseases: An official publication of the Infectious Diseases Society of America,2015,60(2):98−107.
    [30]
    Turnbaugh P J, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host & Microbe,2008,3(4):213−223.
    [31]
    Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15718−15723. doi: 10.1073/pnas.0407076101
  • Related Articles

    [1]HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219-225. DOI: 10.13386/j.issn1002-0306.2023040182
    [2]WANG Yan, DUAN Xuewei, ZHANG Minjun, YANG Huiwen, LIU Bing, YOU Tianhui. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191-200. DOI: 10.13386/j.issn1002-0306.2023020118
    [3]Liming ZHAO, Xuyao GUO, Yingmin MAO, Daqing ZHAO, Baotai HUANG, Jiaqi LI, Li LIU, Bin QI. Optimization of Extraction Process and Antioxidant Activity of Polysaccharide from Panax quinquefolium Fruit by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 160-166. DOI: 10.13386/j.issn1002-0306.2022070318
    [4]MO Yi-fan, YAO Ling-yun, FENG Tao, SONG Shi-qing, SUN Min. Optimization of Flash Extraction Process of Total Flavonoids from Fig (Ficus carica L.) and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2020, 41(12): 186-191,220. DOI: 10.13386/j.issn1002-0306.2020.12.030
    [5]XU Hai-tang, LIAO Hua-zhen, ZHAO Yan-zhi, ZHANG Jin-yan, ZHOU Ju-ying. Optimization Extraction of Polysaccharide from Sophora tonkinensis Gagnep by Response Surface Methodology and Its Antioxidant Activity of Fractionated Alcohol Precipitation Components[J]. Science and Technology of Food Industry, 2019, 40(22): 157-162. DOI: 10.13386/j.issn1002-0306.2019.22.028
    [6]JIA Fu-huai, TU Hong-jian, WANG Jun, TAO Gang, JI Cun-rui, WANG Cai-xia, XIONG Fei-fei, YAN Yong-qiu. Optimization of Ultrasonic-Flash Synergistic Extraction and Antitumor Activity of Polysaccharide from Fibrous Root of Bletilla striata[J]. Science and Technology of Food Industry, 2019, 40(20): 188-195,208. DOI: 10.13386/j.issn1002-0306.2019.20.030
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SHI Xuan, CHENG Xiao-qing, YANG Yong, TAN Hong-jun, LIANG Xu-ming, SHI Wen-juan, SU Zhi-min. Optimization the extraction process of polysaccharide by response surface methodology from the Tremella fuciformis pedicel and its antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 297-301. DOI: 10.13386/j.issn1002-0306.2017.02.049
    [9]GONG Jian. Study on the optimization of enzymatic extraction technology of polysaccharide from Camellia japonica L.by response surface methodology and investigation on its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (17): 197-201. DOI: 10.13386/j.issn1002-0306.2015.17.031
    [10]KE Chun-lin, LI Zuo-mei, LU Bin-yu, QIAN Shi-quan, ZHANG Bin, YUAN Jing. Study on optimization of extraction conditions for polysaccharide from pomegranate flowers and its antioxidant activities[J]. Science and Technology of Food Industry, 2015, (08): 286-289. DOI: 10.13386/j.issn1002-0306.2015.08.051
  • Cited by

    Periodical cited type(1)

    1. 刘丽桃,傅春燕,刘诗薇,周秀娟,谢雨芊,欧阳玉珍,王彪,葛金文. 响应面法优化降脂通脉方多糖的提取工艺研究. 中医药导报. 2024(12): 58-62 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (244) PDF downloads (18) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return