Citation: | YANG Wenjun, LIU Tongjie, LIANG Xi, et al. Effects of 2’-Fucosyllactose on the Colonization and Anti-inflammatory Property of Probiotics[J]. Science and Technology of Food Industry, 2021, 42(20): 355−364. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020190. |
[1] |
王静. 新生儿坏死性小肠结肠炎发病机制研究进展[J]. 安徽医药,2019,23(6):1074−1077. [Wang Jing. Research progress in the pathogenesis of neonatal necrotizing enterocolitis[J]. Anhui Medical and Pharmaceutical Journal,2019,23(6):1074−1077. doi: 10.3969/j.issn.1009-6469.2019.06.004
|
[2] |
Werts A D, Fulton W B, Ladd M R, et al. A novel role for necroptosis in the pathogenesis of necrotizing enterocolitis[J]. Cellular and Molecular Gastroenterology and Hepatology,2020,9(3):403−423. doi: 10.1016/j.jcmgh.2019.11.002
|
[3] |
Wang K, Tao G, Sylvester K G. Recent advances in prevention and therapies for clinical or experimental necrotizing enterocolitis[J]. Digestive Diseases and Sciences,2019,64(11):3078−3085. doi: 10.1007/s10620-019-05618-2
|
[4] |
Schanler R J, Lau C, Hurst N M, et al. Randomized trial of donor human milk versus preterm formula as substitutes for mothers' own milk in the feeding of extremely premature infants[J]. Pediatrics,2005,116(2):400−406. doi: 10.1542/peds.2004-1974
|
[5] |
Morgan R L, Preidis G A, Kashyap P C, et al. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: A systematic review and network meta-analysis of randomized trials[J]. Gastroenterology,2020,159(2):467−480. doi: 10.1053/j.gastro.2020.05.096
|
[6] |
Donovan S M, Comstock S S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity[J]. Annals of Nutrition and Metabolism,2016,69:42−51.
|
[7] |
Kong C L, Cheng L H, Krenning G, et al. Human milk oligosaccharides mediate the crosstalk between intestinal epithelial Caco-2 cells and Lactobacillus plantarum WCFS1 in an in vitro model with intestinal peristaltic shear force[J]. Journal of Nutrition,2020,150(8):2077−2088. doi: 10.1093/jn/nxaa162
|
[8] |
Holscher H D, Bode L, Tappenden K A. Human milk oligosaccharides influence intestinal epithelial cell maturation in vitro[J]. Journal of Pediatric Gastroenterology and Nutrition,2017,64(2):296−301. doi: 10.1097/MPG.0000000000001274
|
[9] |
Cheng L H, Kong C L, Walvoort M T C, et al. Human milk oligosaccharides differently modulate goblet cells under homeostatic, proinflammatory conditions and ER stress[J]. Molecular Nutrition & Food Research,2020,64(5).
|
[10] |
Sodhi C P, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2'-fucosyllactose and 6'-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling[J]. Pediatric Research,2021,89(1):91−101. doi: 10.1038/s41390-020-0852-3
|
[11] |
Yu Z-T, Nanthakumar N N, Newburg D S. The human milk oligosaccharide 2'-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa[J]. Journal of Nutrition,2016,146(10):1980−1990. doi: 10.3945/jn.116.230706
|
[12] |
Goehring K C, Marriage B J, Oliver J S, et al. Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial[J]. Journal of Nutrition,2016,146(12):2559−2566. doi: 10.3945/jn.116.236919
|
[13] |
He Y Y, Liu S B, Kling D E, et al. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation[J]. Gut,2016,65(1):33−46. doi: 10.1136/gutjnl-2014-307544
|
[14] |
Cheng L, Kiewiet M B G, Groeneveld A, et al. Human milk oligosaccharides and its acid hydrolysate LNT2 show immunomodulatory effects via TLRs in a dose and structure-dependent way[J]. Journal of Functional Foods,2019,59:174−184. doi: 10.1016/j.jff.2019.05.023
|
[15] |
Khanna S, Bishnoi M, Kondepudi K K, et al. Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages[J]. World Journal of Microbiology & Biotechnology,2020,36(5).
|
[16] |
Wang X L, Li Z, Xu Z L, et al. Probiotics prevent Hirschsprung's disease-associated enterocolitis: A prospective multicenter randomized controlled trial[J]. International Journal of Colorectal Disease,2015,30(1):105−110. doi: 10.1007/s00384-014-2054-0
|
[17] |
Archer A C, Kurrey N K, Halami P M. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp[J]. Journal of Applied Microbiology,2018,125(1):243−256. doi: 10.1111/jam.13757
|
[18] |
Singh S, Bhatia R, Singh A, et al. Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (Caco-2) by newly isolated Weissella cibaria strains[J]. Food & Function,2018,9(2):1254−1264.
|
[19] |
Li M, Bai Y, Zhou J, et al. Core fucosylation of maternal milk N-glycan evokes B cell activation by selectively promoting the L-fucose metabolism of gut Bifidobacterium spp. and Lactobacillus spp[J]. Mbio,2019,10(2).
|
[20] |
白璐, 张喆, 梁曦, 等. 益生菌对2型糖尿病小鼠的调节作用[J]. 食品工业科技,2020,41(19):339−346. [Bai Lu, Zhang Zhe, Liang Xi, et al. Administration of probiotics on type 2 diabetes mice[J]. Science and Technology of Food Industry,2020,41(19):339−346.
|
[21] |
Yu Z T, Chen C, Newburg D S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes[J]. Glycobiology,2013,23(11):1281−1292. doi: 10.1093/glycob/cwt065
|
[22] |
陈臣, 周方方, 吴正钧, 等. 荧光标记法初探植物乳杆菌ST-Ⅲ对Caco-2细胞的粘附机理[J]. 微生物学通报,2010,37(3):355−361. [Chen Chen, Zhou Fangfang, Wu Zhengjun, et al. A fluorescence labeling method for the study on mechanism of adhesion of Lactobacillus plantarum ST-Ⅲ on Caco-2 cells[J]. Microbiology China,2010,37(3):355−361.
|
[23] |
Celebioglu H U, Olesen S V, Prehn K, et al. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM[J]. Journal of Proteomics,2017,163:102−110. doi: 10.1016/j.jprot.2017.05.015
|
[24] |
Celebioglu H U, Delsoglio M, Brix S, et al. Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic Lactobacillus acidophilus NCFM[J]. Molecular Nutrition & Food Research,2017,62(4):1870041.
|
[25] |
Fiedorowicz E, Markiewicz L H, Sidor K, et al. The influence of breast milk and infant formulae hydrolysates on bacterial adhesion and Caco-2 cells functioning[J]. Food Research International,2016,89:679−688. doi: 10.1016/j.foodres.2016.09.022
|
[26] |
Choi S H, Lee S H, Kim M G, et al. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium-induced colitis animal model[J]. Journal of Dairy Science,2019,102(8):6718−6725. doi: 10.3168/jds.2018-16197
|
[27] |
陈广勇, 韩乾杰, 张玲玲, 等. 黄芪多糖对脂多糖刺激小鼠巨噬细胞形态及免疫功能的影响[J]. 动物营养学报,2020,32(9):4358−4365. [Chen Guangyong, Han Qiangjie, Zhang Lingling, et al. Effects of astragalus polysaccharides on morphology and immune function of lipopolysaccharide-stimulated macrophages in mice[J]. Acta Zoonutrimenta Sinica,2020,32(9):4358−4365.
|
[28] |
崔鹏月, 彭灿, 刘松玲, 等. 具有潜在改善炎症反应益生菌的筛选[J]. 食品工业科技,2020,41(9):314−319. [Cui Pengyue, Peng Can, Liu Songling, et al. Screening of probiotics with potential to improve inflammatory response[J]. Science and Technology of Food Industry,2020,41(9):314−319.
|
[29] |
Ashida H, Miyake A, Kiyohara M, et al. Two distinct alpha-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates[J]. Glycobiology,2009,19(9):1010−1017. doi: 10.1093/glycob/cwp082
|
[30] |
Zhang G F, Zhao J J, Wen R, et al. 2'-fucosyllactose promotes Bifidobacterium bifidum DNG6 adhesion to Caco-2 cells[J]. Journal of Dairy Science,2020,103(11):9825−9834. doi: 10.3168/jds.2020-18773
|
[31] |
Zhai Q X, Shen X D, Cen S, et al. Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice[J]. Food & Function,2020,11(1):221−235.
|
[32] |
Duncan P I, Aitio O, Heiskanen A, et al. Structure and function of bovine whey derived oligosaccharides showing synbiotic epithelial barrier protective properties[J]. Nutrients,2020,12(7):2007.
|
[33] |
郑胜眉, 周兴, 黄文涛, 等. 岩白菜素对LPS诱导RAW264.7细胞炎性因子产生及细胞形态变化的影响[J]. 中药材,2020,43(1):206−210. [Zheng Sheng-mei, Zhou Xing, Huang Wentao, et al. The effect of bergenin on LPS-induced inflammatory factor production and cell morphological changes in RAW264.7 cells[J]. Journal of Chinese Medicinal Materials,2020,43(1):206−210.
|
1. |
王潇,李栋,张立攀. 杜仲叶不同溶剂萃取物对ACE酶活的抑制作用. 河南化工. 2024(01): 25-30 .
![]() | |
2. |
李硕,尼格尔热依·亚迪卡尔,朱金芳,冯作山,邓术升. 小白杏生理落果中多酚提取及体外抗氧化活性分析. 新疆农业科学. 2024(03): 623-631 .
![]() | |
3. |
梅瀚,曹金凤,刘世巍,马建龙,丁建海. 超声辅助提取葡萄籽中原花青素工艺及抗氧化活性研究. 广东化工. 2023(05): 38-41 .
![]() | |
4. |
徐兰程,杨佳燕,徐惠,陈金玉,何碧梅,王晓平,辛桂瑜. 响应面法优化芒果核黄酮提取工艺研究. 中国饲料. 2023(08): 18-22 .
![]() | |
5. |
马嘉洁,赵端端,全世航,郇淇童,郝帅,李坤,朴春香,李官浩,李红梅,牟柏德. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较. 食品工业科技. 2023(12): 344-352 .
![]() | |
6. |
杨郑州,李曦,谢晓娜. 芒果皮多酚提取工艺的优化及抗氧化能力分析. 江西农业学报. 2023(05): 103-108 .
![]() | |
7. |
陈徐回,熊财智,梅瀚,马建龙,曹金凤,刘世巍,丁建海. 葡萄籽抗氧化活性成分研究. 广州化工. 2023(09): 77-80 .
![]() | |
8. |
康超,聂辉,黄双全,伍淑婕,刘凤听. 芒果不同部位多酚化合物抗氧化和抑菌活性研究. 食品科技. 2023(07): 170-175 .
![]() | |
9. |
万荣,农斯伟,杨郑州,卢春静,朱正杰,侯宪斌. 芒果皮核生物学功能及其在动物养殖中的应用研究进展. 饲料研究. 2022(08): 147-149 .
![]() | |
10. |
高国燕,蒋林树,年芳,王慧. 不同省份小果沙棘叶中黄酮类化合物含量测定及体外抗氧化能力评价. 中国饲料. 2022(10): 30-35 .
![]() | |
11. |
郭荣珍,梁茂文,刘纯友,杨锋,丘静. 芒果核提取物对冷藏过程中水牛肉品质的影响. 广西科技大学学报. 2022(04): 100-106 .
![]() | |
12. |
关淑文,潘予琮,寇伟,年芳,蒋林树. 基于高效液相色谱特征指纹图谱法探究不同品种苜蓿中黄酮抗氧化活性的谱-效关系. 动物营养学报. 2022(12): 8086-8096 .
![]() |