Citation: | ZHU Wenzhen, FAN Yingying, XIE Shaohua, et al. Research Progress of the Anti-inflammatory Effects of Honey[J]. Science and Technology of Food Industry, 2024, 45(14): 426−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090211. |
[1] |
RANNEH Y, AKIM A M, HAMID H A, et al. Honey and its nutritional and anti-inflammatory value[J]. BMC Complement Med Ther,2021,21(1):30. doi: 10.1186/s12906-020-03170-5
|
[2] |
SERAGLIO S K T, SCHULZ M, BRUGNEROTTO P, et al. Quality, composition and health-protective properties of citrus honey:A review[J]. Food Res Int,2021,143:110268. doi: 10.1016/j.foodres.2021.110268
|
[3] |
CIANCIOSI D, FORBES-HERNANDEZ T Y, AFRIN S, et al. Phenolic compounds in honey and their associated health benefits:A review[J]. Molecules,2018,23(9):2322. doi: 10.3390/molecules23092322
|
[4] |
ZAMMIT Y G W, BLUNDELL R. A review on the phytochemical composition and health applications of honey[J]. Heliyon,2023,9(2):e12507. doi: 10.1016/j.heliyon.2022.e12507
|
[5] |
ESCUREDO O, SEIJO M C. Honey:Chemical composition, stability and authenticity[J]. Foods,2019,8(11):577. doi: 10.3390/foods8110577
|
[6] |
MARTINEZ-ARMENTA C, CAMACHO-REA M C, MARTÍNEZ-NAVA G A, et al. Therapeutic potential of bioactive compounds in honey for treating osteoarthritis[J]. Front Pharmacol,2021,12:642836. doi: 10.3389/fphar.2021.642836
|
[7] |
WANG H, LI L T, LIN X H, et al. Composition, functional properties and safety of honey:A review[J]. J Sci Food Agric,2023,103(14):6767−6779. doi: 10.1002/jsfa.12720
|
[8] |
SOLIER S, MÜLLER S, CAñEQUE T, et al. A druggable copper-signalling pathway that drives inflammation[J]. Nature,2023,617(7960):386−394. doi: 10.1038/s41586-023-06017-4
|
[9] |
SUZUKI K. Chronic inflammation as an immunological abnormality and effectiveness of exercise[J]. Biomolecules,2019,9(6):223. doi: 10.3390/biom9060223
|
[10] |
TALEBI M, TALEBI M, FARKHONDEH T, et al. Molecular mechanism-based therapeutic properties of honey[J]. Biomed Pharmacother,2020,130:110590. doi: 10.1016/j.biopha.2020.110590
|
[11] |
MASAD R J, HANEEFA S M, MOHAMED Y A, et al. The immunomodulatory effects of honey and associated flavonoids in cancer[J]. Nutrients,2021,13(4):1269. doi: 10.3390/nu13041269
|
[12] |
ALMASAUDI S. The antibacterial activities of honey[J]. Saudi J Biol Sci,2020,28(4):2188−2196.
|
[13] |
STEFANIS C, STAVROPOULOU E, GIORGI E, et al. Honey's antioxidant and antimicrobial properties:A bibliometric study[J]. Antioxidants (Basel),2023,12(2):414. doi: 10.3390/antiox12020414
|
[14] |
KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther,2022,7(1):131. doi: 10.1038/s41392-022-00955-7
|
[15] |
LI X, LI C T, ZHANG W Y, et al. Inflammation and aging:signaling pathways and intervention therapies[J]. Signal Transduct Target Ther,2023,8(1):239. doi: 10.1038/s41392-023-01502-8
|
[16] |
ALANGARI A A, MORRIS K, LWALEED B A, et al. Honey is potentially effective in the treatment of atopic dermatitis:Clinical and mechanistic studies[J]. Immun Inflamm Dis,2017,5(2):190−199. doi: 10.1002/iid3.153
|
[17] |
AW YONG P Y, ISLAM F, HARITH H H, et al. The potential use of honey as a remedy for allergic diseases:A mini review[J]. Front Pharmacol,2021,11:599080. doi: 10.3389/fphar.2020.599080
|
[18] |
MINDEN-BIRKENMAIER B A, CHERUKURI K, SMITH R A, et al. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit[J]. Int J Biomater,2019,2019:6132581.
|
[19] |
ROMÁRIO-SILVA D, LAZARINI J G, FRANCHIN M, et al. Brazilian organic honey from atlantic rainforest decreases inflammatory process in mice[J]. Vet Sci,2022,9(6):268. doi: 10.3390/vetsci9060268
|
[20] |
MINDEN-BIRKENMAIER B A, MEADOWS M B, CHERUKURI K, et al. The effect of Manuka honey on dHL-60 cytokine, chemokine, and matrix-degrading enzyme release under inflammatory conditions[J]. Med One,2019,4(2):e190005.
|
[21] |
AFRIN S, GASPARRINI M, FORBES-HERNÁNDEZ T Y, et al. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1:Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality[J]. Food Chem Toxicol,2018,121:203−213. doi: 10.1016/j.fct.2018.09.001
|
[22] |
CHENG N, WU L M, ZHENG J B, et al. Buckwheat honey attenuates carbon tetrachloride-induced liver and DNA damage in mice[J]. Evid Based Complement Alternat Med,2015,2015:987385.
|
[23] |
BAGATIR G, KAYA M, SUER I, et al. The effect of Anzer honey on X-ray induced genotoxicity in human lymphocytes:An in vitro study[J]. Microsc Res Tech,2022,85(6):2241−2250. doi: 10.1002/jemt.24081
|
[24] |
WUSIMAN A, JIANG W M, YU L, et al. Cationic polymer-modified Alhagi honey polysaccharide PLGA nanoparticles as an adjuvant to induce strong and long-lasting immune responses[J]. Int J Biol Macromol,2021,177:370−382. doi: 10.1016/j.ijbiomac.2021.02.130
|
[25] |
CAI G F, WU Y, WUSIMAN A, et al. Alhagi honey polysaccharides attenuate intestinal injury and immune suppression in cyclophosphamide-induced mice[J]. Food Funct,2021,12(15):6863−6877. doi: 10.1039/D1FO01008E
|
[26] |
CAI G, YANG Y, GU P F, et al. The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey polysaccharides[J]. Phytomedicine,2022,103:154232. doi: 10.1016/j.phymed.2022.154232
|
[27] |
CHENG N, WANG Y A, CAO W. The protective effect of whole honey and phenolic extract on oxidative DNA damage in mice lymphocytes using comet assay[J]. Plant Foods Hum Nutr,2017,72(4):388−395. doi: 10.1007/s11130-017-0634-1
|
[28] |
NAVAEI-ALIPOUR N, MASTALI M, FERNS G A, et al. The effects of honey on pro- and anti-inflammatory cytokines:A narrative review[J]. Phytother Res,2021,35(7):3690−3701. doi: 10.1002/ptr.7066
|
[29] |
YOU R, KWON O Y, WOO H J, et al. Hovenia monofloral honey can attenuate enterococcus faecalis mediated biofilm formation and inflammation[J]. Food Sci Anim Resour,2022,42(1):84−97. doi: 10.5851/kosfa.2021.e65
|
[30] |
ZHAO H A, CHENG N, ZHOU W Q, et al. Honey polyphenols ameliorate DSS-induced ulcerative colitis via modulating gut microbiota in rats[J]. Mol Nutr Food Res,2019,63(23):e1900638. doi: 10.1002/mnfr.201900638
|
[31] |
SUN L P, SHI F F, ZHANG W W, et al. Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L.) honey extract[J]. Foods,2020,9(8):1039. doi: 10.3390/foods9081039
|
[32] |
NEAMATALLAH T, EL-SHITANY N A, ABBAS A T, et al. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway[J]. Food Funct,2018,9(7):3743−3754. doi: 10.1039/C8FO00653A
|
[33] |
GASPARRINI M, AFRIN S, FORBES-HERNÁNDEZ T Y, et al. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2:Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation[J]. Food Chem Toxicol,2018,120:578−587. doi: 10.1016/j.fct.2018.08.001
|
[34] |
NAQVI F, DASTAGIR N, JABEEN A. Honey proteins regulate oxidative stress, inflammation and ameliorates hyperglycemia in streptozotocin induced diabetic rats[J]. BMC Complement Med Ther,2023,23(1):14. doi: 10.1186/s12906-023-03837-9
|
[35] |
OLIVEIRA A, RIBEIRO H G, SILVA A C, et al. Synergistic antimicrobial interaction between honey and phage against escherichia coli biofilms[J]. Front Microbiol,2017,8:2407. doi: 10.3389/fmicb.2017.02407
|
[36] |
NOLAN V C, HARRISON J, COX J A G. Dissecting the antimicrobial composition of honey[J]. Antibiotics (Basel),2019,8(4):251. doi: 10.3390/antibiotics8040251
|
[37] |
KOT B, SYTYKIEWICZ H, SPRAWKA I, et al. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant staphylococcus aureus biofilm formation[J]. Sci Rep,2020,10(1):13552. doi: 10.1038/s41598-020-70666-y
|
[38] |
KIM S Y, KANG S S. Anti-biofilm activities of manuka honey against Escherichia coli O157:H7[J]. Food Sci Anim Resour,2020,40(4):668−674. doi: 10.5851/kosfa.2020.e42
|
[39] |
MOLAN P, RHODES T. Honey:A biologic wound dressing[J]. Wounds,2015,27(6):141−151.
|
[40] |
MCGARRY T, BINIECKA M, VEALE D J, et al. Hypoxia, oxidative stress and inflammation[J]. Free Radic Biol Med,2018,125:15−24. doi: 10.1016/j.freeradbiomed.2018.03.042
|
[41] |
PAPACONSTANTINOU J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease[J]. Cells,2019,8(11):1383. doi: 10.3390/cells8111383
|
[42] |
HUSSAIN T, TAN B, YIN Y L, et al. Oxidative stress and inflammation:What polyphenols can do for us[J]. Oxid Med Cell Longev,2016,2016:7432797.
|
[43] |
KAČÁNIOVÁ M, BOROTOVÁ P, GALOVIČOVÁ L, et al. Antimicrobial and antioxidant activity of different honey samples from beekeepers and commercial producers[J]. Antibiotics (Basel),2022,11(9):1163. doi: 10.3390/antibiotics11091163
|
[44] |
ALVAREZ-SUAREZ J M, GIAMPIERI F, CORDERO M, et al. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing[J]. J Funct Foods,2016,25:38−49. doi: 10.1016/j.jff.2016.05.008
|
[45] |
SAFI S Z, BATUMALAIE K, QVIST R, et al. Gelam honey attenuates the oxidative stress-induced inflammatory pathways in pancreatic hamster cells[J]. Evid Based Complement Alternat Med,2016,2016:5843615.
|
[46] |
ARIGELA C S, NELLI G, GAN S H, et al. Bitter gourd honey ameliorates hepatic and renal diabetic complications on type 2 diabetes rat models by antioxidant, anti-Inflammatory, and anti-Apoptotic mechanisms[J]. Foods,2021,10(11):2872. doi: 10.3390/foods10112872
|
[47] |
DEEPIKA, MAURYA P K. Health benefits of quercetin in age-related diseases[J]. Molecules,2022,27(8):2498. doi: 10.3390/molecules27082498
|
[48] |
PLUTA R, MIZIAK B, CZUCZWAR S J. Apitherapy in post-ischemic brain neurodegeneration of Alzheimer's disease proteinopathy:Focus on honey and its flavonoids and phenolic acids[J]. Molecules,2023,28(15):5624. doi: 10.3390/molecules28155624
|
[49] |
ZHANG X D, SCHALKWIJK C G, WOUTERS K. Immunometabolism and the modulation of immune responses and host defense:A role for methylglyoxal[J]. Biochim Biophys Acta Mol Basis Dis,2022,1868(8):166425. doi: 10.1016/j.bbadis.2022.166425
|
[50] |
SILVA B, BILUCA F C, GONZAGA L V, et al. In vitro anti-inflammatory properties of honey flavonoids:A review[J]. Food Res Int,2021,141:110086. doi: 10.1016/j.foodres.2020.110086
|
[51] |
LE K, SONG Z P, DENG J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation[J]. Inflamm Res,2020,69(12):1201−1213. doi: 10.1007/s00011-020-01402-5
|
[52] |
YE Y R, JIANG M Z, HONG X Y, et al. Quercetin alleviates deoxynivalenol-induced intestinal damage by suppressing inflammation and ferroptosis in mice[J]. J Agric Food Chem,2023,71(28):10761−10772. doi: 10.1021/acs.jafc.3c02027
|
[53] |
LUO X, BAO X Y, WENG X Z, et al. The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway[J]. Life Sci,2021,291:120064.
|
[54] |
LI J H, SUN Z Y, LUO G, et al. Quercetin attenuates trauma-induced heterotopic ossification by tuning immune cell infiltration and related inflammatory insult[J]. Front Immunol,2021,12:649285. doi: 10.3389/fimmu.2021.649285
|
[55] |
KE X, CHEN Z Q, WANG X Q, et al. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis[J]. Autoimmunity,2023,56(1):2189133. doi: 10.1080/08916934.2023.2189133
|
[56] |
AL-KHAYRI J M, SAHANA G R, NAGELLA P, et al. Flavonoids as potential anti-inflammatory molecules:A review[J]. Molecules,2022,27(9):2901. doi: 10.3390/molecules27092901
|
[57] |
ADHAM A N, ABDELFATAH S, NAQISHBANDI A M, et al. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells[J]. Phytomedicine,2020,80:153371.
|
[58] |
JI X Y, DU W, CHE W Q, et al. Apigenin inhibits the progression of osteoarthritis by mediating macrophage polarization[J]. Molecules,2023,28(7):2915. doi: 10.3390/molecules28072915
|
[59] |
WU Q J, LI W, ZHAO J, et al. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation[J]. Biomed Pharmacother,2021,137:111308. doi: 10.1016/j.biopha.2021.111308
|
[60] |
YU H, HUANG X, ZHU H H, et al. Apigenin ameliorates non-eosinophilic inflammation, dysregulated immune homeostasis and mitochondria-mediated airway epithelial cell apoptosis in chronic obese asthma via the ROS-ASK1-MAPK pathway[J]. Phytomedicine,2023,111:154646. doi: 10.1016/j.phymed.2023.154646
|
[61] |
ZHAO S N, LIANG M L, WANG Y L, et al. Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway[J]. J Cardiovasc Pharmacol Ther,2019,24(3):278−287. doi: 10.1177/1074248418810809
|
[62] |
YANG Z P, GUAN Y F, LI J, et al. Chrysin attenuates carrageenan-induced pleurisy and lung injury via activation of SIRT1/NRF2 pathway in rats[J]. Eur J Pharmacol,2018,836:83−88. doi: 10.1016/j.ejphar.2018.08.015
|
[63] |
ZHANG Y, ZHAO J, AFZAL O, et al. Neuroprotective role of chrysin-loaded poly (lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway[J]. J Biochem Mol Toxicol,2020,35(2):e22634.
|
[64] |
LU H, YAO H, ZOU R, et al. Galangin suppresses renal inflammation via the inhibition of NF-κB, PI3K/AKT and NLRP3 in uric acid treated NRK-52E tubular epithelial cells[J]. Biomed Res Int,2019,2019:3018357.
|
[65] |
SUN X Y, LI L J, DONG Q X, et al. Rutin prevents tau pathology and neuroinflammation in a mouse model of alzheimer's disease[J]. J Neuroinflammation,2021,18(1):131. doi: 10.1186/s12974-021-02182-3
|
[66] |
KITAMURA H, SAITO N, FUJIMOTO J, et al. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro[J]. BMC Complement Altern Med,2018,18(1):138. doi: 10.1186/s12906-018-2198-5
|
[67] |
LIU Z Y, YAO X Q, SUN B H, et al. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury[J]. Free Radic Biol Med,2021,168:142−154. doi: 10.1016/j.freeradbiomed.2021.03.037
|
[68] |
BECERRIL-SÁNCHEZ A L, QUINTERO-SALAZAR B, DUBLÁN-GARCÍA O, et al. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color[J]. Antioxidants (Basel),2021,10(11):1700. doi: 10.3390/antiox10111700
|
[69] |
ABOZAID O A R, MOAWED F S M, AHMED E S A, et al. Cinnamic acid nanoparticles modulate redox signal and inflammatory response in gamma irradiated rats suffering from acute pancreatitis[J]. Biochim Biophys Acta Mol Basis Dis,2020,1866(11):165904. doi: 10.1016/j.bbadis.2020.165904
|
[70] |
WAN F, ZHONG R Q, WANG M Y, et al. Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice[J]. Front Microbiol,2021,12:784211. doi: 10.3389/fmicb.2021.784211
|
[71] |
ZIELIŃSKA D, ZIELIŃSKI H, LAPARRA-LLOPIS J M, et al. Caffeic acid modulates processes associated with intestinal inflammation[J]. Nutrients,2021,13(2):554. doi: 10.3390/nu13020554
|
[72] |
LIMA Â C O, DIAS E R, REIS I M A, et al. Ferulic acid as major antioxidant phenolic compound of the tetragonisca angustula honey collected in Vera Cruz-Itaparica Island, Bahia, Brazil[J]. Braz J Biol,2022,84:e253599.
|
[73] |
LI D, RUI Y X, GUO S D, et al. Ferulic acid:A review of its pharmacology, pharmacokinetics and derivatives[J]. Life Sci,2021,284:119921. doi: 10.1016/j.lfs.2021.119921
|
[74] |
MAO X B, YANG Q, CHEN D W, et al. Benzoic acid used as food and feed additives can regulate gut functions[J]. Biomed Res Int,2019,2019:5721585.
|
[75] |
SYNOWIEC A, ŻYłA K, GNIEWOSZ M, et al. An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli[J]. Open Life Sci,2021,16(1):594−601. doi: 10.1515/biol-2021-0060
|
[76] |
BAI J R, ZHANG Y S, TANG C, et al. Gallic acid:Pharmacological activities and molecular mechanisms involved in inflammation-related diseases[J]. Biomed Pharmacother,2021,133:110985. doi: 10.1016/j.biopha.2020.110985
|
[77] |
SHAHZAD S, MATEEN S, KAUSAR T, et al. Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction[J]. Naunyn Schmiedebergs Arch Pharmacol,2020,393(4):691−704. doi: 10.1007/s00210-019-01768-2
|
[78] |
TANG J, COMPTON B J, MARSHALL A, et al. Mānuka honey-derived methylglyoxal enhances microbial sensing by mucosal-associated invariant T cells[J]. Food Funct,2020,11(7):5782−5787. doi: 10.1039/D0FO01153C
|
[79] |
WEI S L, YANG Y, SI W Y, et al. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway[J]. Redox Biol,2023,65:102843. doi: 10.1016/j.redox.2023.102843
|
[80] |
BOLLONG M J, LEE G, COUKOS J S, et al. A metabolite-derived protein modification integrates glycolysis with Keap1-Nrf2 signalling[J]. Nature,2018,562(7728):600−604. doi: 10.1038/s41586-018-0622-0
|
[81] |
BAUMANN T, DUNKEL A, SCHMID C, et al. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal[J]. Nat Immunol,2020,21(5):555−566. doi: 10.1038/s41590-020-0666-9
|
[82] |
PALMA-MORALES M, HUERTAS J R, RODRÍGUEZ-PÉREZ C. A comprehensive review of the effect of honey on human health[J]. Nutrients,2023,15(13):3056. doi: 10.3390/nu15133056
|
[83] |
ABDULRHMAN M A, MEKAWY M A, AWADALLA M M, et al. Bee honey added to the oral rehydration solution in treatment of gastroenteritis in infants and children[J]. J Med Food,2010,13(3):605−609. doi: 10.1089/jmf.2009.0075
|
[84] |
ANDAYANI R P, NURHAENI N, AGUSTINI N. The effect of honey with ORS and a honey solution in ORS on reducing the frequency of diarrhea and length of stay for toddlers[J]. Compr Child Adolesc Nurs,2019,42(sup1):21−28. doi: 10.1080/24694193.2019.1577922
|
[85] |
ALY H, SAID R N, WALI I E, et al. Medically graded honey supplementation formula to preterm infants as a prebiotic:A randomized controlled trial[J]. J Pediatr Gastroenterol Nutr,2017,64(6):966−970. doi: 10.1097/MPG.0000000000001597
|
[86] |
AL-WAILI N S. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects:comparison with dextrose and sucrose[J]. J Med Food,2004,7(1):100−107. doi: 10.1089/109662004322984789
|
[87] |
MAZRUEI ARANI N, EMAM-DJOMEH Z, TAVAKOLIPOUR H, et al. The effects of probiotic honey consumption on metabolic status in patients with diabetic nephropathy:A randomized, double-blind, controlled trial[J]. Probiotics Antimicrob Proteins,2019,11(4):1195−1201. doi: 10.1007/s12602-018-9468-x
|
[88] |
ABDULRHMAN M A, MAMDOUH N A, EL GUINDY W M, et al. Effects of honey supplementation on children with idiopathic dilated cardiomyopathy:A randomized single blinded controlled study[J]. World J Pharm Res,2018,7:19−34.
|
[89] |
BAHRAMI M, ATAIE-JAFARI A, HOSSEINI S, et al. Effects of natural honey consumption in diabetic patients:An 8-week randomized clinical trial[J]. Int J Food Sci Nutr,2009,60(7):618−626. doi: 10.3109/09637480801990389
|
[90] |
LEE V S, HUMPHREYS I M, PURCELL P L, et al. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis:A randomized controlled trial[J]. Int Forum Allergy Rhinol,2017,7(4):365−372. doi: 10.1002/alr.21898
|
[91] |
LEE V S, HUMPHREYS I M, PURCELL P L, et al. Manuka honey versus saline sinus irrigation in the treatment of cystic fibrosis-associated chronic rhinosinusitis:A randomised pilot trial[J]. Clin Otolaryngol,2021,46(1):168−174. doi: 10.1111/coa.13637
|
[92] |
OOI M L, JOTHIN A, BENNETT C, et al. Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis:Phase 1 randomized, single-blinded, placebo-controlled trial[J]. Int Forum Allergy Rhinol,2019,9(12):1470−1477. doi: 10.1002/alr.22423
|
[93] |
ALSUBAIE H M, ALSINI A Y, ALSUBAIE K M, et al. Glutamine for prevention and alleviation of radiation-induced oral mucositis in patients with head and neck squamous cell cancer:Systematic review and meta-analysis of controlled trials[J]. Head Neck,2021,43(10):3199−3213. doi: 10.1002/hed.26798
|
[94] |
RAO S, HEGDE S K, RAO P, et al. Honey mitigates radiation-induced oral mucositis in head and neck cancer patients without affecting the tumor response[J]. Foods,2017,6(9):77. doi: 10.3390/foods6090077
|
[95] |
MAMGAIN R K, GUPTA M, MAMGAIN P, et al. The efficacy of an ayurvedic preparation of yashtimadhu (Glycyrrhiza glabra) on radiation-induced mucositis in head-and-neck cancer patients:A pilot study[J]. J Cancer Res Ther,2018,16(3):458−462.
|
[96] |
KHANJANI POUR-FARD-PACHEKENARI A, RAHMANI A, GHAHRAMANIAN A, et al. The effect of an oral care protocol and honey mouthwash on mucositis in acute myeloid leukemia patients undergoing chemotherapy:a single-blind clinical trial[J]. Clin Oral Investig,2019,23(4):1811−1821. doi: 10.1007/s00784-018-2621-9
|
[97] |
GAMALELDIN M, ABRAHAM I, MEABED M, et al. Comparative effectiveness of adding omega-3 and Manuka honey combination to conventional therapy in preventing and treating oxidative stress in pediatric β-thalassemia major-a randomized clinical trial[J]. Eur Rev Med Pharmacol Sci,2023,27(13):6058−6070.
|
[98] |
AFSHAR F, ABDOLAHI N, AMIN G, et al. A randomized, double-blind placebo-controlled phase I clinical study on safety and efficacy of the G-Rup® syrup (a mixture of ginger extract and honey) in symptomatic treatment of knee osteoarthritis[J]. J Clin Pharm Ther,2022,47(12):2295−2301. doi: 10.1111/jcpt.13812
|
[1] | LÜ Haokun, YANG Tenghui, WU Qici, PAN Yutian, XUE Yu. Exploring the Effect of Glucosamine Hydrochloride on Liver Cancer Using Zebrafish Liver Cancer Model[J]. Science and Technology of Food Industry, 2024, 45(20): 332-340. DOI: 10.13386/j.issn1002-0306.2023110259 |
[2] | SUN Yi, XIA Hongzhi, NIU Kun, LI Jiangbo, ZHU Yulei, LI Guyue, YIN Zhongyan. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320-327. DOI: 10.13386/j.issn1002-0306.2023030026 |
[3] | LIU Juncai, GE Zhen, JIANG Xiao, CUI Baojin, ZHANG Ping, SUN Jian'an, MAO Xiangzhao. Effects of Royal Jelly Peptide on Motor Ability and Gene Expression in Zebrafish Model of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2023, 44(21): 395-401. DOI: 10.13386/j.issn1002-0306.2023010021 |
[4] | JIN Lingtai, ZHANG Ming, FANG Shuangqi, XU Qiang. Study on Lowering Uric Acid Effect and Component Analysis of Drug Food Homologous Compound Based on Zebrafish Model[J]. Science and Technology of Food Industry, 2023, 44(19): 410-416. DOI: 10.13386/j.issn1002-0306.2022110251 |
[5] | WANG Shengnan, FU Xiaoting, XU Jiachao, GAO Xin. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356-365. DOI: 10.13386/j.issn1002-0306.2020120007 |
[6] | ZHANG Yingyu, PUBU Duoji, LU Cong, WANG Fengzhong. Screening of Uric Acid-lowering Food and Medicinal Materials Based on Inhibiting Xanthine Oxidase Activity and Zebrafish Hyperuricemia Model[J]. Science and Technology of Food Industry, 2021, 42(12): 334-339. DOI: 10.13386/j.issn1002-0306.2020080220 |
[7] | NI Li-ying, ZOU Ya-xue, FU Xiao-ting, DUAN De-lin, XU Jia-chao, GAO Xin. Anti-inflammatory Mechanism of Phenolic Compounds from Sargassum fusiforme by LPS-induced Zebrafish Embryo Model[J]. Science and Technology of Food Industry, 2019, 40(21): 279-285. DOI: 10.13386/j.issn1002-0306.2019.21.046 |
[8] | ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048 |
[9] | HOU Cai-ping, HAN Li-wen, ZHANG Feng, CHU Jie, ZHANG Xuan-ming, WANG Rong-chun, CHEN Xi-qiang, WANG Dai-jie, LIU Ke-chun, TIAN Qing-ping, HE Qiu-xia. Study on the antioxidant activity of isochlorogenic acid A[J]. Science and Technology of Food Industry, 2017, (12): 72-76. DOI: 10.13386/j.issn1002-0306.2017.12.013 |
[10] | LI Quan-guo, CHU Jie, CHEN Xi-qiang, WANG Jun-gao, WU Xiao-min, LIU Ke-chun. Study on the antioxidant activity evaluation of Jujube ( Ziziphus) leaf flavonoids in vitro and zebrafish ( Danio rerio) with fluorescent skin[J]. Science and Technology of Food Industry, 2014, (05): 58-61. DOI: 10.13386/j.issn1002-0306.2014.05.071 |