Citation: | SANG Panting, GUO Yahui, ZHANG Qianyao, et al. Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products[J]. Science and Technology of Food Industry, 2021, 42(20): 415−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090087. |
[1] |
Vishnuraj M R, Kandeepan G, Rao K H, et al. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review[J]. Cogent Food & Agriculture,2016,2(1):1−8.
|
[2] |
万遂如. 关于畜牧业生产中兽用抗菌药减量化使用问题[J]. 养猪,2019(2):89−93. [Wan S R. On the reduction of the use of veterinary antibacterial drugs in animal husbandry production[J]. Pig,2019(2):89−93. doi: 10.3969/j.issn.1002-1957.2019.02.032
|
[3] |
Guo L, Wang Y, Fei P, et al. A survey on the aflatoxin M1 occurrence in raw milk and dairy products from water buffalo in South China[J]. Food Control,2019,105:159−163. doi: 10.1016/j.foodcont.2019.05.033
|
[4] |
Xiong J, Peng L, Zhou H, et al. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China[J]. Food Control,2020,108:106840. doi: 10.1016/j.foodcont.2019.106840
|
[5] |
施春煜. 牛奶中β-内酰胺酶半定量快速检测试纸的研究[J]. 农产品加工月刊,2016(12):11−13. [Shi C Y. Semi-quantitative rapid detection test paper for β-lactamase in milk[J]. Agricultural Products Processing Monthly,2016(12):11−13.
|
[6] |
王温琪, 唐志德, 周燕, 等. 应用益生菌监测牛奶抗生素残留[J]. 中国微生态学杂志,2019,31(7):787−792. [Wang W Q, Tang Z D, Zhou Y, et al. Application of probiotics to monitor milk antibiotic residues[J]. Chinese Journal of Microecology,2019,31(7):787−792.
|
[7] |
Zhang X, Wen K, Wang Z, et al. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk[J]. Food Control,2016,60:588−595. doi: 10.1016/j.foodcont.2015.08.040
|
[8] |
Jiefang, Sun, Xueyong, et al. Ultrasensitive on-site detection of biological active ricin in complex food matrices based on immunomagnetic enrichment and fluorescence switch-on nanoprobe[J]. Analytical Chemistry,2019,91(10):6454−6461.
|
[9] |
Li J, Ren X, Diao Y, et al. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2018,257:259−264. doi: 10.1016/j.foodchem.2018.02.144
|
[10] |
方灵, 韦航, 黄彪, 等. 超高效液相色谱-串联质谱法同时测定牛奶中38种抗生素残留[J]. 分析测试学报,2019,38(6):681−686. [Fang L, Wei H, Huang B, et al. Simultaneous determination of 38 antibiotic residues in milk by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2019,38(6):681−686. doi: 10.3969/j.issn.1004-4957.2019.06.008
|
[11] |
Han M, Gong L, Wang J, et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk[J]. Sensors and Actuators B: Chemical,2019,292:94−104. doi: 10.1016/j.snb.2019.04.019
|
[12] |
Wu C, Liu D, Peng T, et al. Development of a one-step immunochromatographic assay with two cutoff values of aflatoxin M1[J]. Food Control,2016,63:11−14. doi: 10.1016/j.foodcont.2015.11.010
|
[13] |
Rossi R, Saluti G, Moretti S, et al. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2017,35(2):241−257.
|
[14] |
Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced raman scattering[J]. ACS Nano,2020,14(1):28−117. doi: 10.1021/acsnano.9b04224
|
[15] |
Doering W E, Piotti M E, Natan M J, et al. SERS as a foundation for nanoscale, optically detected biological labels[J]. Advanced Materials,2007,19(20):3100−3108. doi: 10.1002/adma.200701984
|
[16] |
Zong C, Xu M, Xu L, et al. Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chemical Reviews,2018,118(10):4946−4980. doi: 10.1021/acs.chemrev.7b00668
|
[17] |
William R V, Das G M, Dantham V R, et al. Enhancement of single molecule raman scattering using sprouted potato shaped bimetallic nanoparticles[J]. Scientific Reports,2019,9:10771. doi: 10.1038/s41598-019-47179-4
|
[18] |
Alsammarraie F K, Lin M. Using standing gold nanorod arrays as surface-enhanced raman spectroscopy(SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of Agricultural & Food Chemistry,2017,65(3):666−674.
|
[19] |
Mei R, Wang Y, Yu Q, et al. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality[J]. ACS Applied Materials & Interfaces,2020,12(2):2059−2066.
|
[20] |
Zhai Y, Zheng Y, Ma Z, et al. Synergistic enhancement effect for boosting raman detection sensitivity of antibiotics[J]. ACS Sensors,2019,4(11):2958−2965. doi: 10.1021/acssensors.9b01436
|
[21] |
Nie B, Luo Y, Shi J, et al. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and Actuators B-Chemical,2019,301:127087. doi: 10.1016/j.snb.2019.127087
|
[22] |
Marques A, Veigas B, Araújo A, et al. Paper-based SERS platform for one-step screening of tetracycline in milk[J]. Scientific Reports,2019,9(1):17922. doi: 10.1038/s41598-019-54380-y
|
[23] |
Zhou N, Zhou Q, Meng G, et al. Incorporation of a basil-seed-based surface enhanced raman scattering sensor with a pipet for detection of melamine[J]. ACS Sensors,2016,1(10):1193−1197. doi: 10.1021/acssensors.6b00312
|
[24] |
Nguyen A H, Ma X, Park H G, et al. Low-blinking SERS substrate for switchable detection of kanamycin[J]. Sensors and Actuators B: Chemical,2019,282:765−773. doi: 10.1016/j.snb.2018.11.037
|
[25] |
He H, Sun D, Pu H, et al. Applications of raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments[J]. Critical Reviews in Food Science and Nutrition,2019,59(5):770−793. doi: 10.1080/10408398.2018.1528436
|
[26] |
Liu S, Kannegulla A, Kong X, et al. Simultaneous colorimetric and surface-enhanced raman scattering detection of melamine from milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2020,231:118130. doi: 10.1016/j.saa.2020.118130
|
[27] |
Dhakal S, Chao K, Huang Q, et al. A simple surface-enhanced raman spectroscopic method for on-site screening of tetracycline residue in whole milk[J]. Sensors,2018,18(2):424. doi: 10.3390/s18020424
|
[28] |
Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced raman scattering[J]. Talanta,2017,167:236−241. doi: 10.1016/j.talanta.2017.02.022
|
[29] |
Kaleem A, Azmat M, Sharma A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced raman scattering[J]. Food Chemistry,2019,277:624−631. doi: 10.1016/j.foodchem.2018.11.027
|
[30] |
Li N, Han S, Zhang C, et al. Detection of chlortetracycline hydrochloride in milk with a solid sers substrate based on self-assembled gold nanobipyramids[J]. Analytical Sciences,2020,36(8):935−940. doi: 10.2116/analsci.19P476
|
[31] |
Hussain A, Sun D, Pu H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS[J]. Food Chemistry,2020,317:126429. doi: 10.1016/j.foodchem.2020.126429
|
[32] |
Moreno V, Adnane A, Salghi R, et al. Nanostructured hybrid surface enhancement raman scattering substrate for the rapid determination of sulfapyridine in milk samples[J]. Talanta,2019,194:357−362. doi: 10.1016/j.talanta.2018.10.047
|
[33] |
Huang C, Lu F, Xu K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi: 10.1016/j.cclet.2019.02.006
|
[34] |
Xu Y, Kutsanedzie F, Hassan M, et al. Synthesized Au NPs@silica composite as surface-enhanced raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,206:405−412. doi: 10.1016/j.saa.2018.08.035
|
[35] |
Hussain A, Pu H, Sun D. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS[J]. Journal of Food Measurement and Characterization,2020,14(4):2021−2029. doi: 10.1007/s11694-020-00448-7
|
[36] |
Muhammad M, Yan B, Yao G, et al. Surface-enhanced raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays[J]. ACS Applied Nano Materials,2020,3(7):7066−7075. doi: 10.1021/acsanm.0c01389
|
[37] |
Xiao G, Li L, Yan A, et al. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,223:117269. doi: 10.1016/j.saa.2019.117269
|
[38] |
Hussain A, Pu H, Sun D. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2019,36(6):851−862.
|
[39] |
Liu Y, Zhou F, Wang H, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B-Chemical,2019,299:126990. doi: 10.1016/j.snb.2019.126990
|
[40] |
Zhang C, You T, Yang N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi: 10.1016/j.foodchem.2019.02.094
|
[41] |
Xu D, Kang W, Zhang S, et al. Quantitative determination of melamine in milk by surface-enhanced raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi: 10.1016/j.microc.2019.04.077
|
[42] |
Kim A, Barcelo S J, Williams R S, et al. Melamine sensing in milk products by using surface enhanced raman scattering[J]. Anal Chem,2012,84(21):9303−9309. doi: 10.1021/ac302025q
|
[43] |
Viehrig M, Rajendran S T, Sanger K, et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk[J]. Analytical Chemistry,2020,92(6):4317−4325. doi: 10.1021/acs.analchem.9b05060
|
[44] |
Wang Z, Zong S, Wu L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews,2017,117(12):7910−7963. doi: 10.1021/acs.chemrev.7b00027
|
[45] |
Yang K, Hu Y, Dong N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,80:373−377.
|
[46] |
Shi Q, Huang J, Sun Y, et al. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced raman spectroscopy for ultrasensitive detection of antibiotics in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2018,197:107−113. doi: 10.1016/j.saa.2017.11.045
|
[47] |
Li A, Tang L, Song D, et al. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1[J]. Nanoscale,2016,8(4):1873−1878. doi: 10.1039/C5NR08372A
|
[48] |
Li J, Wang W, Zhang H, et al. Programmable DNA tweezer-actuated SERS probe for the sensitive detection of AFB1[J]. Anal Chem,2020,92(7):4900−4907. doi: 10.1021/acs.analchem.9b04822
|
[49] |
Yan W, Yang L, Zhuang H, et al. Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,78:67−72.
|
[50] |
Li H, Chen Q, Hassan M M, et al. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J]. Biosensors & Bioelectronics,2017,92:192−199.
|
[51] |
Guo X, Li J, Arabi M, et al. Molecular-imprinting-based surface-enhanced raman scattering sensors[J]. ACS sensors,2020,5(3):601−619. doi: 10.1021/acssensors.9b02039
|
[52] |
Zhao P, Liu H, Zhang L, et al. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification[J]. ACS Applied Materials & Interfaces,2020,12(7):8845−8854.
|
[53] |
Xie Y, Zhao M, Hu Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy,2017,48(2):204−210. doi: 10.1002/jrs.5034
|
[54] |
Zengin A, Tamer U, Caykara T. Extremely sensitive sandwich assay of kanamycin using surface-enhanced raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles[J]. Analytica Chimica Acta,2014,817:33−41. doi: 10.1016/j.aca.2014.01.042
|
[55] |
Li Y, Tang S, Zhang W, et al. A surface-enhanced raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B-Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
|
[56] |
Li X, Yang T, Song Y, et al. Surface-enhanced raman spectroscopy(SERS)-based immunochromatographic assay(ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B-Chemical,2019,283:230−238. doi: 10.1016/j.snb.2018.11.112
|
[57] |
He L, Rodda T, Haynes C L, et al. Detection of a foreign protein in milk using surface-enhanced raman spectroscopy coupled with antibody-modified silver dendrites[J]. Analytical Chemistry,2011,83(5):1510−1513. doi: 10.1021/ac1032353
|
[58] |
Wu Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods,2019,12(5):1086−1091. doi: 10.1007/s12161-019-01444-4
|
[59] |
Li H, Huang X, Mehedi Hassan M, et al. Dual-channel biosensor for Hg2+ sensing in food using Au@Ag/graphene-upconversion nanohybrids as metal-enhanced fluorescence and SERS indicators[J]. Microchemical Journal,2020,154:104563. doi: 10.1016/j.microc.2019.104563
|
[60] |
Jiang Y, Sun D, Pu H, et al. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor[J]. Talanta,2019,197:151−158. doi: 10.1016/j.talanta.2019.01.015
|
[61] |
He H, Sun D, Pu H, et al. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1[J]. Food Chemistry,2020,324:126832. doi: 10.1016/j.foodchem.2020.126832
|
[62] |
Fang Q, Li Y, Miao X, et al. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology[J]. Analyst,2019,144(11):3649−3658. doi: 10.1039/C9AN00190E
|
[63] |
Jiang Y, Sun D, Pu H, et al. A simple and sensitive aptasensor based on SERS for trace analysis of kanamycin in milk[J]. Journal of Food Measurement and Characterization,2020.
|
[64] |
Dong N, Hu Y, Yang K, et al. Development of aptamer-modified SERS nano sensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity[J]. Sensors and Actuators B-Chemical,2016,228:85−93. doi: 10.1016/j.snb.2015.12.089
|
[65] |
Wu Z. AuNP tetramer-based aptasensor for SERS sensing of oxytetracycline[J]. Food Analytical Methods,2019,12(5):1121−1127. doi: 10.1007/s12161-019-01453-3
|
[66] |
Xu Y, Hassan M M, Ali S, et al. SERS-based rapid detection of 2, 4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers[J]. Microchimica Acta,2020,187(8).
|
[67] |
Wang Chongwen, Wang Chaoguang, Wang Xiaolong, et al. Magnetic SERS-strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces,2019,11(21):19495−19505.
|
[68] |
Wu Y, Choi N, Chen H, et al. Performance evaluation of surface-enhanced raman scattering-polymerase chain reaction sensors for future use in sensitive genetic assays[J]. Analytical Chemistry,2020,92(3):2628−2634. doi: 10.1021/acs.analchem.9b04522
|
[69] |
Liu Haibin, Du Xinjun, Zang Yuxuan, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis[J]. Journal of Agricultural & Food Chemistry,2017,65(47):10290−10299.
|
[70] |
Lv X, Huang Y, Liu D, et al. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9390−9398. doi: 10.1021/acs.jafc.9b03414
|
[71] |
王炜. 表面增强拉曼光谱与高效液相色谱联用技术及应用研究[D]. 苏州: 苏州大学, 2015.
Wang W. Surface-enhanced Raman spectroscopy and high performance liquid chromatography combined technology and application research[D]. Suzhou: Soochow University, 2015.
|
[72] |
Zhao Y, Tan A, Squire K, et al. Quaternion-based parallel feature extraction: Extending the horizon of quantitative analysis using TLC-SERS sensing[J]. Sensors and Actuators B-Chemical,2019,299:126902. doi: 10.1016/j.snb.2019.126902
|