SANG Panting, GUO Yahui, ZHANG Qianyao, et al. Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products[J]. Science and Technology of Food Industry, 2021, 42(20): 415−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090087.
Citation: SANG Panting, GUO Yahui, ZHANG Qianyao, et al. Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products[J]. Science and Technology of Food Industry, 2021, 42(20): 415−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090087.

Application of Surface Enhanced Raman Spectroscopy in the Detection of Harmful Substances in Milk and Dairy Products

More Information
  • Received Date: September 09, 2020
  • Available Online: August 10, 2021
  • Milk and dairy products are one of the indispensable foods for human beings. The harmful substances such as agricultural and veterinary drug residues, mycotoxins, illegally added substances and other pollutants pose a serious threat to consumers' health and safety, and also hinder the development of the dairy industry. Surface enhanced raman spectroscopy (SERS) as an emerging detection method is expected to meet the current high-throughput and high-sensitivity detection needs of milk and dairy products. This article mainly summarizes the research progress of SERS method in milk detection, including the preparation of metal nano-detection probes and SERS solid-phase platform, the application of molecular recognition technologies such as antibodies and aptamers, the combination of nucleic acid amplification technology and microfluidic technology with SERS. Finally, the research and development direction and application prospects of SERS in dairy products are summarized and prospected.
  • [1]
    Vishnuraj M R, Kandeepan G, Rao K H, et al. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review[J]. Cogent Food & Agriculture,2016,2(1):1−8.
    [2]
    万遂如. 关于畜牧业生产中兽用抗菌药减量化使用问题[J]. 养猪,2019(2):89−93. [Wan S R. On the reduction of the use of veterinary antibacterial drugs in animal husbandry production[J]. Pig,2019(2):89−93. doi: 10.3969/j.issn.1002-1957.2019.02.032
    [3]
    Guo L, Wang Y, Fei P, et al. A survey on the aflatoxin M1 occurrence in raw milk and dairy products from water buffalo in South China[J]. Food Control,2019,105:159−163. doi: 10.1016/j.foodcont.2019.05.033
    [4]
    Xiong J, Peng L, Zhou H, et al. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China[J]. Food Control,2020,108:106840. doi: 10.1016/j.foodcont.2019.106840
    [5]
    施春煜. 牛奶中β-内酰胺酶半定量快速检测试纸的研究[J]. 农产品加工月刊,2016(12):11−13. [Shi C Y. Semi-quantitative rapid detection test paper for β-lactamase in milk[J]. Agricultural Products Processing Monthly,2016(12):11−13.
    [6]
    王温琪, 唐志德, 周燕, 等. 应用益生菌监测牛奶抗生素残留[J]. 中国微生态学杂志,2019,31(7):787−792. [Wang W Q, Tang Z D, Zhou Y, et al. Application of probiotics to monitor milk antibiotic residues[J]. Chinese Journal of Microecology,2019,31(7):787−792.
    [7]
    Zhang X, Wen K, Wang Z, et al. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk[J]. Food Control,2016,60:588−595. doi: 10.1016/j.foodcont.2015.08.040
    [8]
    Jiefang, Sun, Xueyong, et al. Ultrasensitive on-site detection of biological active ricin in complex food matrices based on immunomagnetic enrichment and fluorescence switch-on nanoprobe[J]. Analytical Chemistry,2019,91(10):6454−6461.
    [9]
    Li J, Ren X, Diao Y, et al. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2018,257:259−264. doi: 10.1016/j.foodchem.2018.02.144
    [10]
    方灵, 韦航, 黄彪, 等. 超高效液相色谱-串联质谱法同时测定牛奶中38种抗生素残留[J]. 分析测试学报,2019,38(6):681−686. [Fang L, Wei H, Huang B, et al. Simultaneous determination of 38 antibiotic residues in milk by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2019,38(6):681−686. doi: 10.3969/j.issn.1004-4957.2019.06.008
    [11]
    Han M, Gong L, Wang J, et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk[J]. Sensors and Actuators B: Chemical,2019,292:94−104. doi: 10.1016/j.snb.2019.04.019
    [12]
    Wu C, Liu D, Peng T, et al. Development of a one-step immunochromatographic assay with two cutoff values of aflatoxin M1[J]. Food Control,2016,63:11−14. doi: 10.1016/j.foodcont.2015.11.010
    [13]
    Rossi R, Saluti G, Moretti S, et al. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2017,35(2):241−257.
    [14]
    Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced raman scattering[J]. ACS Nano,2020,14(1):28−117. doi: 10.1021/acsnano.9b04224
    [15]
    Doering W E, Piotti M E, Natan M J, et al. SERS as a foundation for nanoscale, optically detected biological labels[J]. Advanced Materials,2007,19(20):3100−3108. doi: 10.1002/adma.200701984
    [16]
    Zong C, Xu M, Xu L, et al. Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chemical Reviews,2018,118(10):4946−4980. doi: 10.1021/acs.chemrev.7b00668
    [17]
    William R V, Das G M, Dantham V R, et al. Enhancement of single molecule raman scattering using sprouted potato shaped bimetallic nanoparticles[J]. Scientific Reports,2019,9:10771. doi: 10.1038/s41598-019-47179-4
    [18]
    Alsammarraie F K, Lin M. Using standing gold nanorod arrays as surface-enhanced raman spectroscopy(SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of Agricultural & Food Chemistry,2017,65(3):666−674.
    [19]
    Mei R, Wang Y, Yu Q, et al. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality[J]. ACS Applied Materials & Interfaces,2020,12(2):2059−2066.
    [20]
    Zhai Y, Zheng Y, Ma Z, et al. Synergistic enhancement effect for boosting raman detection sensitivity of antibiotics[J]. ACS Sensors,2019,4(11):2958−2965. doi: 10.1021/acssensors.9b01436
    [21]
    Nie B, Luo Y, Shi J, et al. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and Actuators B-Chemical,2019,301:127087. doi: 10.1016/j.snb.2019.127087
    [22]
    Marques A, Veigas B, Araújo A, et al. Paper-based SERS platform for one-step screening of tetracycline in milk[J]. Scientific Reports,2019,9(1):17922. doi: 10.1038/s41598-019-54380-y
    [23]
    Zhou N, Zhou Q, Meng G, et al. Incorporation of a basil-seed-based surface enhanced raman scattering sensor with a pipet for detection of melamine[J]. ACS Sensors,2016,1(10):1193−1197. doi: 10.1021/acssensors.6b00312
    [24]
    Nguyen A H, Ma X, Park H G, et al. Low-blinking SERS substrate for switchable detection of kanamycin[J]. Sensors and Actuators B: Chemical,2019,282:765−773. doi: 10.1016/j.snb.2018.11.037
    [25]
    He H, Sun D, Pu H, et al. Applications of raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments[J]. Critical Reviews in Food Science and Nutrition,2019,59(5):770−793. doi: 10.1080/10408398.2018.1528436
    [26]
    Liu S, Kannegulla A, Kong X, et al. Simultaneous colorimetric and surface-enhanced raman scattering detection of melamine from milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2020,231:118130. doi: 10.1016/j.saa.2020.118130
    [27]
    Dhakal S, Chao K, Huang Q, et al. A simple surface-enhanced raman spectroscopic method for on-site screening of tetracycline residue in whole milk[J]. Sensors,2018,18(2):424. doi: 10.3390/s18020424
    [28]
    Chen Y, Li X, Yang M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced raman scattering[J]. Talanta,2017,167:236−241. doi: 10.1016/j.talanta.2017.02.022
    [29]
    Kaleem A, Azmat M, Sharma A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced raman scattering[J]. Food Chemistry,2019,277:624−631. doi: 10.1016/j.foodchem.2018.11.027
    [30]
    Li N, Han S, Zhang C, et al. Detection of chlortetracycline hydrochloride in milk with a solid sers substrate based on self-assembled gold nanobipyramids[J]. Analytical Sciences,2020,36(8):935−940. doi: 10.2116/analsci.19P476
    [31]
    Hussain A, Sun D, Pu H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS[J]. Food Chemistry,2020,317:126429. doi: 10.1016/j.foodchem.2020.126429
    [32]
    Moreno V, Adnane A, Salghi R, et al. Nanostructured hybrid surface enhancement raman scattering substrate for the rapid determination of sulfapyridine in milk samples[J]. Talanta,2019,194:357−362. doi: 10.1016/j.talanta.2018.10.047
    [33]
    Huang C, Lu F, Xu K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi: 10.1016/j.cclet.2019.02.006
    [34]
    Xu Y, Kutsanedzie F, Hassan M, et al. Synthesized Au NPs@silica composite as surface-enhanced raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,206:405−412. doi: 10.1016/j.saa.2018.08.035
    [35]
    Hussain A, Pu H, Sun D. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS[J]. Journal of Food Measurement and Characterization,2020,14(4):2021−2029. doi: 10.1007/s11694-020-00448-7
    [36]
    Muhammad M, Yan B, Yao G, et al. Surface-enhanced raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays[J]. ACS Applied Nano Materials,2020,3(7):7066−7075. doi: 10.1021/acsanm.0c01389
    [37]
    Xiao G, Li L, Yan A, et al. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2019,223:117269. doi: 10.1016/j.saa.2019.117269
    [38]
    Hussain A, Pu H, Sun D. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2019,36(6):851−862.
    [39]
    Liu Y, Zhou F, Wang H, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B-Chemical,2019,299:126990. doi: 10.1016/j.snb.2019.126990
    [40]
    Zhang C, You T, Yang N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi: 10.1016/j.foodchem.2019.02.094
    [41]
    Xu D, Kang W, Zhang S, et al. Quantitative determination of melamine in milk by surface-enhanced raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi: 10.1016/j.microc.2019.04.077
    [42]
    Kim A, Barcelo S J, Williams R S, et al. Melamine sensing in milk products by using surface enhanced raman scattering[J]. Anal Chem,2012,84(21):9303−9309. doi: 10.1021/ac302025q
    [43]
    Viehrig M, Rajendran S T, Sanger K, et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk[J]. Analytical Chemistry,2020,92(6):4317−4325. doi: 10.1021/acs.analchem.9b05060
    [44]
    Wang Z, Zong S, Wu L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews,2017,117(12):7910−7963. doi: 10.1021/acs.chemrev.7b00027
    [45]
    Yang K, Hu Y, Dong N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,80:373−377.
    [46]
    Shi Q, Huang J, Sun Y, et al. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced raman spectroscopy for ultrasensitive detection of antibiotics in milk[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2018,197:107−113. doi: 10.1016/j.saa.2017.11.045
    [47]
    Li A, Tang L, Song D, et al. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1[J]. Nanoscale,2016,8(4):1873−1878. doi: 10.1039/C5NR08372A
    [48]
    Li J, Wang W, Zhang H, et al. Programmable DNA tweezer-actuated SERS probe for the sensitive detection of AFB1[J]. Anal Chem,2020,92(7):4900−4907. doi: 10.1021/acs.analchem.9b04822
    [49]
    Yan W, Yang L, Zhuang H, et al. Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol[J]. Biosensors & Bioelectronics,2016,78:67−72.
    [50]
    Li H, Chen Q, Hassan M M, et al. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J]. Biosensors & Bioelectronics,2017,92:192−199.
    [51]
    Guo X, Li J, Arabi M, et al. Molecular-imprinting-based surface-enhanced raman scattering sensors[J]. ACS sensors,2020,5(3):601−619. doi: 10.1021/acssensors.9b02039
    [52]
    Zhao P, Liu H, Zhang L, et al. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification[J]. ACS Applied Materials & Interfaces,2020,12(7):8845−8854.
    [53]
    Xie Y, Zhao M, Hu Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy,2017,48(2):204−210. doi: 10.1002/jrs.5034
    [54]
    Zengin A, Tamer U, Caykara T. Extremely sensitive sandwich assay of kanamycin using surface-enhanced raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles[J]. Analytica Chimica Acta,2014,817:33−41. doi: 10.1016/j.aca.2014.01.042
    [55]
    Li Y, Tang S, Zhang W, et al. A surface-enhanced raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B-Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
    [56]
    Li X, Yang T, Song Y, et al. Surface-enhanced raman spectroscopy(SERS)-based immunochromatographic assay(ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B-Chemical,2019,283:230−238. doi: 10.1016/j.snb.2018.11.112
    [57]
    He L, Rodda T, Haynes C L, et al. Detection of a foreign protein in milk using surface-enhanced raman spectroscopy coupled with antibody-modified silver dendrites[J]. Analytical Chemistry,2011,83(5):1510−1513. doi: 10.1021/ac1032353
    [58]
    Wu Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods,2019,12(5):1086−1091. doi: 10.1007/s12161-019-01444-4
    [59]
    Li H, Huang X, Mehedi Hassan M, et al. Dual-channel biosensor for Hg2+ sensing in food using Au@Ag/graphene-upconversion nanohybrids as metal-enhanced fluorescence and SERS indicators[J]. Microchemical Journal,2020,154:104563. doi: 10.1016/j.microc.2019.104563
    [60]
    Jiang Y, Sun D, Pu H, et al. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor[J]. Talanta,2019,197:151−158. doi: 10.1016/j.talanta.2019.01.015
    [61]
    He H, Sun D, Pu H, et al. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1[J]. Food Chemistry,2020,324:126832. doi: 10.1016/j.foodchem.2020.126832
    [62]
    Fang Q, Li Y, Miao X, et al. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology[J]. Analyst,2019,144(11):3649−3658. doi: 10.1039/C9AN00190E
    [63]
    Jiang Y, Sun D, Pu H, et al. A simple and sensitive aptasensor based on SERS for trace analysis of kanamycin in milk[J]. Journal of Food Measurement and Characterization,2020.
    [64]
    Dong N, Hu Y, Yang K, et al. Development of aptamer-modified SERS nano sensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity[J]. Sensors and Actuators B-Chemical,2016,228:85−93. doi: 10.1016/j.snb.2015.12.089
    [65]
    Wu Z. AuNP tetramer-based aptasensor for SERS sensing of oxytetracycline[J]. Food Analytical Methods,2019,12(5):1121−1127. doi: 10.1007/s12161-019-01453-3
    [66]
    Xu Y, Hassan M M, Ali S, et al. SERS-based rapid detection of 2, 4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers[J]. Microchimica Acta,2020,187(8).
    [67]
    Wang Chongwen, Wang Chaoguang, Wang Xiaolong, et al. Magnetic SERS-strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces,2019,11(21):19495−19505.
    [68]
    Wu Y, Choi N, Chen H, et al. Performance evaluation of surface-enhanced raman scattering-polymerase chain reaction sensors for future use in sensitive genetic assays[J]. Analytical Chemistry,2020,92(3):2628−2634. doi: 10.1021/acs.analchem.9b04522
    [69]
    Liu Haibin, Du Xinjun, Zang Yuxuan, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis[J]. Journal of Agricultural & Food Chemistry,2017,65(47):10290−10299.
    [70]
    Lv X, Huang Y, Liu D, et al. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9390−9398. doi: 10.1021/acs.jafc.9b03414
    [71]
    王炜. 表面增强拉曼光谱与高效液相色谱联用技术及应用研究[D]. 苏州: 苏州大学, 2015.

    Wang W. Surface-enhanced Raman spectroscopy and high performance liquid chromatography combined technology and application research[D]. Suzhou: Soochow University, 2015.
    [72]
    Zhao Y, Tan A, Squire K, et al. Quaternion-based parallel feature extraction: Extending the horizon of quantitative analysis using TLC-SERS sensing[J]. Sensors and Actuators B-Chemical,2019,299:126902. doi: 10.1016/j.snb.2019.126902
  • Related Articles

    [1]GU Dandan, DONG Xue, ZHANG Jinxiu, WANG Xiaoru, ZHAO Zongshuo, WANG Li'an. Optimization of the Solid-state Fermentation Process for Morchella esculenta Fermented Wheat and Analysis of Its Nutritional Components, Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 237-245. DOI: 10.13386/j.issn1002-0306.2024090266
    [2]WANG Chunlin, WU Yun, LU Yani, HAN Minghu, WANG Lipeng, HU Haobin. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218-225. DOI: 10.13386/j.issn1002-0306.2021010239
    [3]LI Yajun, YI Que, YANG Junheng, DENG Xiaomei, LIANG Zhonghou. Study on Optimization of Ultrasonic-Assisted Extraction Technology of Total Flavonoids from Kadsura coccinea Flowers and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(13): 179-183. DOI: 10.13386/j.issn1002-0306.2020090267
    [4]SHIAU Syyu, LI Ying, PAN Weicheng. Physico-chemical and Antioxidant Properties of Noodle Enriched with Beetroot Puree[J]. Science and Technology of Food Industry, 2021, 42(13): 33-38. DOI: 10.13386/j.issn1002-0306.2020070353
    [5]Yuedong SONG, Xiaoqing CHEN, Yumin ZHANG, Yanfang ZHANG, Zhiyi WANG, Fei WANG. Optimization of Extraction Process of Flavonoids from Fagopyrum esculentum Moench Leaves and Its Antioxidant Properties[J]. Science and Technology of Food Industry, 2021, 42(7): 180-187. DOI: 10.13386/j.issn1002-0306.2020060122
    [6]YAO Hong-ling, LU Qu, HAN Ran, NAI Yi-fan, JIA Tian-hui. The preparation process optimization and antioxidant properties in vitro of hydrolysates from pigeon meat[J]. Science and Technology of Food Industry, 2018, 39(4): 64-67,87.
    [7]LI Bo-hang, SHEN He-ding, ZHU Min, ZHAO Yong-can. Study on process optimization and antioxidant activity of bioactive peptides from Onchidium struma[J]. Science and Technology of Food Industry, 2017, (17): 168-173. DOI: 10.13386/j.issn1002-0306.2017.17.032
    [8]Study on antioxidation properties of hydrolysates from the scallop skirt in vivo and in vitro[J]. Science and Technology of Food Industry, 2013, (08): 290-294. DOI: 10.13386/j.issn1002-0306.2013.08.009
    [9]茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Cited by

    Periodical cited type(3)

    1. 张敏杰,杨武德,代叶,李玮,魏晴,梁珊珊. 黔产不同商品规格金钗石斛质量评价研究. 亚太传统医药. 2024(04): 39-43 .
    2. 林鑫静,张明,李鑫,周春阳,蒲跃,袁斌,范艺缤,范润勇,夏天琴,尤俊,杨晓曦,胥正敏. 调脏舒秘合剂小鼠急性毒性实验研究. 现代中医药. 2023(02): 91-95 .
    3. 杨吉容,石京山. 金钗石斛破壁粉对自发性高血压大鼠血压及心功能的影响. 遵义医科大学学报. 2022(06): 699-705 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return