LI Xia, ZHANG Guozhu, LIU Zhifei, et al. Hypoglycemic Activity of Enteromorpha intestinalis Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(15): 321−326. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090021.
Citation: LI Xia, ZHANG Guozhu, LIU Zhifei, et al. Hypoglycemic Activity of Enteromorpha intestinalis Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(15): 321−326. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090021.

Hypoglycemic Activity of Enteromorpha intestinalis Polysaccharide

More Information
  • Received Date: September 02, 2020
  • Available Online: June 01, 2021
  • In order to explore the hypoglycemic activity of Enteromorpha intestinalis polysaccharide, the components were separated by DEAE cellulose column chromatography and their physical and chemical properties were determined, and the effect of EIP-2 components on hypoglycemic indexes in mice was studied. The experimental animals were divided into normal group, model group, metformin positive group (50 mg/kg/day), EIP-2 low dose group (50 mg/kg/day), EIP-2 medium dose group (100 mg/kg/day), EIP-2 high dose group (200 mg/kg/day). The body weight, fasting blood glucose concentration, glucose and insulin tolerance, serum insulin and lipid levels, liver antioxidant enzyme levels were measured. The results showed that compared with the model group, the weight of mice in each dose groups was significantly increased (P<0.001), fasting blood glucose was significantly decreased (P<0.001), glucose and insulin tolerance were improved after EIP-2 intervention. The levels of serum nonestesterified fatty acid in high dose group were significantly lower than those in model group (P<0.01), and the levels of serum insulin and triglyceride were decreased in a dose-dependent manner. Compared with the model group, the liver aspartate aminotransferase level was significantly decreased (P<0.01), alanine aminotransferase level was significantly decreased (P<0.001), superoxide dismutase level was significantly increased (P<0.01), and the liver catalase level was significantly increased in the low-dose group (P<0.05). In summary, EIP can improve blood glucose regulation, blood lipid metabolism and liver oxidative stress in T2DM mice, which provides a reference for study of the hypoglycemic mechanism of EIP and the development and utilization of hypoglycemic drugs.
  • [1]
    Yan X, Yang C F, Lin G P, et al. Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice[J]. Journal of Food Science,2019,84(1):165−173. doi: 10.1111/1750-3841.14415
    [2]
    聂绪强, 张丹丹, 张涵. 炎症、胰岛素抵抗与糖尿病的中药治疗[J]. 中国药学杂志,2017,52(1):1−7.
    [3]
    Cui J F, Ye H, Zhu Y J, et al. Characterization and hypoglycemic activity of a rhamnan-type sulfated polysaccharide derivative[J]. Marine Drugs,2019,17(1):21. doi: 10.3390/md17010021
    [4]
    Chen C, Huang Q, Li C, et al. Hypoglycemic effects of a Fructus mori polysaccharide in vitro and in vivo[J]. Food & Function,2017,8(7):2523−2535.
    [5]
    Zhao C, Yang C F, Liu B, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits[J]. Trends in Food Science & Technology,2018,72:1−12.
    [6]
    Jia R B, Wu J, Li Z R, et al. Structural characterization of polysaccharides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats[J]. International Journal of Biological Macromolecules,2020,155:1040−1049. doi: 10.1016/j.ijbiomac.2019.11.068
    [7]
    Jin D Q, Li G, Kim J S, et al. Preventive effects of Laminaria japonica aqueous extract on the oxidative stress and xanthine oxidase activity in streptozotocin-induced diabetic rat liver[J]. Biological & Pharmaceutical Bulletin,2004,27(7):1037−1040.
    [8]
    Parikh P, Mani U, Iyer U. Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus[J]. Journal of Medicinal Food,2001,4(4):193−199. doi: 10.1089/10966200152744463
    [9]
    Cao C L, Li C, Chen Q, et al. Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum[J]. International Journal of Biological Macromolecules,2019,139:1009−1017. doi: 10.1016/j.ijbiomac.2019.08.069
    [10]
    Sim S Y, Shin Y E, Kim H K, et al. Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes[J]. Nutrition Research,2019,65:54−62. doi: 10.1016/j.nutres.2019.02.002
    [11]
    Lin W T, Wang W X, Liao D D, et al. Polysaccharides from Enteromorpha prolifera improve glucose metabolism in diabetic rats[J]. Journal of Diabetes Research,2015,2015:675201.
    [12]
    金浩良, 徐年军, 严小军. 浒苔中生物活性物质的研究进展[J]. 海洋科学,2011,35(4):100−106.
    [13]
    Yuan X B, Zheng J P, Ren L S, et al. Enteromorpha prolifera oligomers relieve pancreatic injury in streptozotocin (STZ)-induced diabetic mice[J]. Carbohydrate Polymers,2019,206:403−411. doi: 10.1016/j.carbpol.2018.11.019
    [14]
    孙士红, 陈艳, 刘莹. 碱提浒苔多糖降血糖作用研究[J]. 中国医学创新,2010,7(20):181−182. doi: 10.3969/j.issn.1674-4985.2010.20.104
    [15]
    刘乾阳, 殳叶婷, 刘睿, 等. 江苏地产浒苔多糖对四氧嘧啶诱导糖尿病小鼠的降糖作用研究[J]. 南京中医药大学学报,2017,33(4):403−407.
    [16]
    刘玉凤, 贾淑颖, 刘飞飞, 等. 不同取代度的硫酸化肠浒苔多糖抗氧化活性研究[J]. 食品工业科技,2016,37(19):142−147, 152.
    [17]
    张居作, 许巧玲, 徐君飞. 苦瓜多糖含量的苯酚硫酸法检测研究[J]. 食品研究与开发,2015,36(5):82−85. doi: 10.3969/j.issn.1005-6521.2015.05.021
    [18]
    姜瑞芝, 陈英红, 杨勇杰, 等. 银耳多糖中糖醛酸含量的测定[J]. 中草药,2004(9):36−38.
    [19]
    王文平, 郭祀远, 李琳, 等. 考马斯亮蓝法测定野木瓜多糖中蛋白质的含量[J]. 食品研究与开发,2008(1):115−117. doi: 10.3969/j.issn.1005-6521.2008.01.036
    [20]
    程柳, 李静. 3, 5-二硝基水杨酸法测定山楂片中还原糖和总糖含量[J]. 轻工科技,2016,32(3):25−28.
    [21]
    Liao Z Z, Zhang J Y, Liu B, et al. Polysaccharide from okra (Abelmoschus esculentus (L.) moench) improves antioxidant capacity via PI3K/AKT Pathways and Nrf2 translocation in a type 2 diabetes model[J]. Molecules,2019,24(10):1906. doi: 10.3390/molecules24101906
    [22]
    Liu J, Zhao Y P, Wu Q X, et al. Structure characterisation of polysaccharides in vegetable "okra" and evaluation of hypoglycemic activity[J]. Food Chemistry,2018,242:211−216. doi: 10.1016/j.foodchem.2017.09.051
    [23]
    马永强, 张凯, 王鑫, 等. 甜玉米芯多糖对糖尿病大鼠的降血糖作用[J]. 食品科学,2020,41(13):169−173. doi: 10.7506/spkx1002-6630-20190702-030
    [24]
    Jia R B, Li Z R, Wu J, et al. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats[J]. International Journal of Biological Macromolecules,2020,147:428−438. doi: 10.1016/j.ijbiomac.2019.12.243
    [25]
    Chen Z Q, Wang C, Pan Y X, et al. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice[J]. Food & Function,2018,9(1):426−439.
    [26]
    刘亚萍, 高文鸽, 梁隽杰, 等. 菊粉复配灵芝多糖对2型糖尿病大鼠的降血糖作用[J]. 食品工业科技,2019,40(20):310−315, 324.
    [27]
    Gaetani G F, Ferraris A M, Rolfo M, et al. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes[J]. Blood,1996,87(4):1595−1599. doi: 10.1182/blood.V87.4.1595.bloodjournal8741595
    [28]
    顾华杰, 王琰, 奚红, 等. 灰树花多糖对罗非鱼非特异性免疫力的影响[J]. 水产科学,2013(8):453−458. doi: 10.3969/j.issn.1003-1111.2013.08.004
    [29]
    段懿涵, 徐健, 卢学春, 等. 鸡腿菇多糖对链脲佐菌素诱导糖尿病大鼠的降血糖作用[J]. 中国比较医学杂志,2019,29(12):76−81.
    [30]
    Tang Z H, Gao H W, Wang S, et al. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera[J]. International Journal of Biological Macromolecules,2013,58:186−189. doi: 10.1016/j.ijbiomac.2013.03.048
  • Related Articles

    [1]CAO Wanxue, LI Jiao, TAO Qiang, FAN Xuanxuan, LU Jiting, CHEN Naifu, CHEN Naidong. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060247
    [2]WANG Yanan, QIAN Xinyi, YONG Yidan, WU Mengmeng, LI Yihao, CHEN Yuhang, NI Zaizhong, LI Lulu, CHEN Anhui, ZHANG Peng, GENG Ying, SHAO Ying. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070386
    [3]HAN Pengfei, ZHU Xuan, YANG Min, HUANG Guiqiang. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130-136. DOI: 10.13386/j.issn1002-0306.2022090117
    [4]WANG Mingrui, DENG Yongping, SONG Qingyan, CHEN Yuebin, LIU Xiaolan. Optimization of Polysaccharides and Fibrinolytic Enzyme Co-production from Cordyceps militaris through Solid State Fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71-76. DOI: 10.13386/j.issn1002-0306.2020040341
    [5]WU Tong, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei, HUA Chun, CHI Yue-lan. Study on the preparation of Cordyceps militaris polysaccharide/Nano-Selenium complex[J]. Science and Technology of Food Industry, 2017, (05): 49-53. DOI: 10.13386/j.issn1002-0306.2017.05.001
    [6]CHEN Xiao-li, WU Guang-hong, HUANG Zhuo-lie. Structural characterization of a polysaccharide from cultured Cordyceps militaris with antioxidant activity[J]. Science and Technology of Food Industry, 2016, (06): 155-159. DOI: 10.13386/j.issn1002-0306.2016.06.023
    [7]YANG Wen- ya, LI Chang- zheng, ZHANG Hai- hui, ZHANG Di, CAI Mei- hong, WANG Jia, DUAN Yu- qing. Study on the optimization for the extraction and antioxidant activity of polysaccharide from cordyceps militaris by subcritical water[J]. Science and Technology of Food Industry, 2016, (05): 252-257. DOI: 10.13386/j.issn1002-0306.2016.05.041
    [8]WANG Xue, CHI Yue-lan, HUA Chun, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei. Effect of different extraction methods on the feature of polysaccharide in Cordyceps Militaris[J]. Science and Technology of Food Industry, 2015, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2015.09.001
    [9]Study on the anti-mutagenic effect of Cordyceps militaris polysaccharide[J]. Science and Technology of Food Industry, 2013, (11): 350-352. DOI: 10.13386/j.issn1002-0306.2013.11.006
    [10]Optimization of nutritional conditions for promotion of polysaccharide produced by Cordyceps gunnii in submerged culture[J]. Science and Technology of Food Industry, 2013, (10): 225-229. DOI: 10.13386/j.issn1002-0306.2013.10.015
  • Cited by

    Periodical cited type(3)

    1. 魏帅,唐崟珺,马嘉亿,刘颖琳,刘振洋,刘书成. 超临界CO_2萃取联合超声处理对凡纳滨对虾虾头油脂提取效果的影响. 保鲜与加工. 2024(01): 15-19 .
    2. 陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用. 微生物学报. 2024(08): 2768-2783 .
    3. 徐文思,张梦媛,李柏花,杨祺福,危纳强,杨品红,周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展. 食品工业科技. 2021(17): 432-438 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (328) PDF downloads (31) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return