Citation: | GUAN Mengshu, XU Cong, JIANG Rui, et al. Recent Progress of Influence Factors and Mechanism of Oil Body Stability[J]. Science and Technology of Food Industry, 2021, 42(16): 421−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080291. |
[1] |
Huang A H C. Oil bodies and oleosins in seeds[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:177−200.
|
[2] |
Shimada T L, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves[J]. Plant Physiology,2018,176(1):199−207. doi: 10.1104/pp.17.01522
|
[3] |
Frandsen G I, Mundy J, Tzen J T C. Oil bodies and their associated proteins, oleosin and caleosin[J]. Physiologia Plantarum,2010,112(3):301−307.
|
[4] |
Yatsu L Y, Jacks T J. Spherosome membranes: Half unit-membranes[J]. Plant Physiology,1972,49(6):937−943. doi: 10.1104/pp.49.6.937
|
[5] |
胡琪, 郭诗文, 吕莹, 等. 油脂体组成、结构及油脂体蛋白研究进展[J]. 食品科学,2015,36(11):230−235. doi: 10.7506/spkx1002-6630-201511043
|
[6] |
Daniele Marcoux, Anna Gorkiewicz-Petkow, Ranella Hirsch, et al. Dry skin improvement by an oleosome emulsion as a carrier for sphingolipid[J]. Journal of the American Academy of Dermatology,2003,50(3):77.
|
[7] |
Tzen, J T. Surface structure and properties of plant seed oil bodies[J]. Journal of Cell Biology,1992,117(2):327−335. doi: 10.1083/jcb.117.2.327
|
[8] |
Tzen J, Cao Y, Laurent P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiology,1993,101(1):267−276. doi: 10.1104/pp.101.1.267
|
[9] |
Capuano F, Frédéric Beaudoin, Napier J A, et al. Properties and exploitation of oleosins[J]. Biotechnology Advances,2007,25(2):203−206. doi: 10.1016/j.biotechadv.2006.11.006
|
[10] |
Jolivet Pascale, Boulard Céline, Bellamy Annick, et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus[J]. Journal of Plant Physiology,2011,168(17):2015−2020. doi: 10.1016/j.jplph.2011.06.007
|
[11] |
Tzen J T C, Lie G C, Huang A H C. Characterization of the charged components and their topology on the surface of plant seed oil bodies[J]. Journal of Biological Chemistry,1992,267(22):15626. doi: 10.1016/S0021-9258(19)49582-3
|
[12] |
Lin L J, Tai S S, Peng C C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies[J]. Plant Physiology,2002,128(4):1200−1211.
|
[13] |
Tai S S K, Chen M C M, Peng C C, et al. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies[J]. Journal of the Agricultural Chemical Society of Japan,2002,66(10):2146−2153.
|
[14] |
Frédéric Beaudoin, Napier J A. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: The central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism[J]. Planta,2002,215(2):293−303. doi: 10.1007/s00425-002-0737-1
|
[15] |
Purkrtova Z, Jolivet P, Miquel M, et al. Structure and function of seed lipid-body-associated proteins[J]. Comptes Rendus Biologies,2008,331(10):746−754. doi: 10.1016/j.crvi.2008.07.016
|
[16] |
Pasaribu B, Lin I P, Tzen J T C, et al. SLDP: A novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from euphyllia glabrescens[J]. Marine Biotechnology,2014,16(5):560−571. doi: 10.1007/s10126-014-9574-z
|
[17] |
Allouche D, Parello J, Sanejouand YH. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study[J]. Journal of Molecular Biology,1999,285(2):857−873. doi: 10.1006/jmbi.1998.2329
|
[18] |
Poxleitner M, Rogers S W, Samuels A L, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. Plant Journal,2010,47(6):917−933.
|
[19] |
Nikiforidis C V, Scholten E. High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies[J]. Food Hydrocolloids,2015,43(1):283−289.
|
[20] |
Yang N, Su C, Zhang Y, et al. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy[J]. Journal of Colloid and Interface Science,2020:362−374.
|
[21] |
Bourgeois C, Gomaa A I, Lefevre T, et al. Interaction of oil bodies proteins with phospholipid bilayers: A molecular level elucidation as revealed by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2019:873−881.
|
[22] |
Iwanaga D, Gray D, Decker E A, et al. Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition[J]. Journal of Agricultural & Food Chemistry,2008,56(6):2240−2245.
|
[23] |
徐琼. 共轭亚油酸水包油型乳液物理化学稳定性研究[D]. 武汉: 湖北工业大学, 2013.
|
[24] |
David Julian Mcclements. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition,2007,47(7):611−649. doi: 10.1080/10408390701289292
|
[25] |
Niu R H, Chen F S, Zhao Z T, et al. Effect of papain on the demulsification of peanut oil body emulsion and the corresponding mechanism[J]. Journal of Oleo Science,2020,69(6):617−625. doi: 10.5650/jos.ess19297
|
[26] |
Fisk I D, White D A, Lad M, et al. Oxidative stability of sunflower oil bodies[J]. European Journal of Lipid ence & Technology,2010,110(10):962−968.
|
[27] |
Constantinos V. Nikiforidis. Structure and functions of oleosomes (oil bodies)[J]. Advances in Colloid and Interface Science,2019:274.
|
[28] |
Karefyllakis D, Octaviana H, Jan V D G A, et al. The emulsifying performance of mildly derived mixtures from sunflower seeds[J]. Food Hydrocolloids,2018,88(3):75−85.
|
[29] |
Constantinos V. Nikiforidis, Olga A. Karkani, Vassilios Kiosseoglou. Exploitation of maize germ for the preparation of a stable oil-body nanoemulsion using a combined aqueous extraction-ultrafiltration method[J]. Food Hydrocolloids,2011,25(5):1122−1127. doi: 10.1016/j.foodhyd.2010.10.009
|
[30] |
田其英, 华欲飞, 孔祥珍, 等. 大豆油体的提取及其功能性质[J]. 食品工业,2019,40(3):13−16.
|
[31] |
Karkani Olga A, Nenadis Nikolaos, Nikiforidis Constantinos V, et al. Effect of recovery methods on the oxidative and physical stability of oil body emulsions[J]. Food Chemistry,2013,139(1-4):640−648. doi: 10.1016/j.foodchem.2012.12.055
|
[32] |
Yan Z, Zhao L, Kong X, et al. Behaviors of particle size and bound proteins of oil bodies in soymilk processing[J]. Food Chemistry,2016,194(3):881−890.
|
[33] |
Jian Ding, Zejian Xu, Baokun Qi, et al. Thermally treated soya bean oleosomes: the changes in their stability and associated proteins[J]. International Journal of Food Science & Technology,2020,55(1):229−238.
|
[34] |
Chen B, Mcclements D J, Gray D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chemistry,2012,132(3):1514−1520. doi: 10.1016/j.foodchem.2011.11.144
|
[35] |
丁俭, 张巧智, 韩天翔, 等. 热处理对大豆油脂体乳液特性的影响[J]. 食品科学,2016,37(19):8−14. doi: 10.7506/spkx1002-6630-201619002
|
[36] |
陈业明, 赵路苹, 熊小辉, 等. 热处理对大豆油体表面的油体蛋白和外源性蛋白影响[J]. 食品工业科技,2014,35(22):106−109, 113.
|
[37] |
Qi B, Ding J, Wang Z, et al. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH[J]. Food Research International,2017,100(1):551.
|
[38] |
Wan Wang, Chunli Cui, Qiuling Wang, et al. Effect of pH on physicochemical properties of oil bodies from different oil crops[J]. Journal of Food Science and Technology,2019,56(1):49−58. doi: 10.1007/s13197-018-3453-y
|
[39] |
Kapchie V N, Yao L, Hauck C C, et al. Oxidative stability of soybean oil in oleosomes as affected by pH and iron[J]. Food Chemistry,2013,141(3):2286−2293. doi: 10.1016/j.foodchem.2013.05.018
|
[40] |
Lan X , Qiang W , Yang Y , et al. Physicochemical stability of safflower oil body emulsions during food processing[J]. LWT,2020.
|
[41] |
Toya Ishii, Kentaro Matsumiya, Yasuki Matsumura. Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies[J]. Food Hydrocolloids,2021,111:106312.
|
[42] |
Zhou Longzheng, Chen Fusheng, Hao Lihua, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(10):2812−2819. doi: 10.1111/1750-3841.14801
|
[43] |
王智丰, 雷帆, 武艺, 等. 芝麻油体的稳定性及油体膜蛋白结构分析[J]. 食品科技,2019,44(8):190−196.
|
[44] |
李婷婷, 李志远, 孙静, 等. 牡丹油体提取及其稳定性研究[J]. 中国粮油学报,2019,34(8):98−103. doi: 10.3969/j.issn.1003-0174.2019.08.017
|
[45] |
Maria Juliana Romero-Guzmán, Vasileios Petris, Simone De Chirico, et al. The effect of monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations on rapeseed oleosome (oil body) extraction and stability at pH 7[J]. Food Chemistry,2020,306:125578. doi: 10.1016/j.foodchem.2019.125578
|
[46] |
李迎宾. 咪唑类离子液体表面活性剂的性能及与蛋白质相互作用研究[D]. 郑州: 郑州轻工业大学, 2019.
|
[47] |
Nikiforidis C V, Donsouzi S, Kiosseoglou V. The interplay between diverse oil body extracts and exogenous biopolymers or surfactants[J]. Food Research International,2016,83(5):14−24.
|
[48] |
Constantinos V. Nikiforidis, Vassilios Kiosseoglou. Competitive displacement of oil body surface proteins by Tween 80 – Effect on physical stability[J]. Food Hydrocolloids,2011,25(5):1063−1068. doi: 10.1016/j.foodhyd.2010.10.002
|
[49] |
Sukhotu R, Shi X, Hu Q, et al. Aggregation behaviour and stability of maize germ oil body suspension[J]. Food Chemistry,2014,164:1−6. doi: 10.1016/j.foodchem.2014.05.003
|
[50] |
Hou Juncai, Feng Xue, Jiang Mengting, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT,2019,113:108263. doi: 10.1016/j.lwt.2019.108263
|
[51] |
Sui X, Sun H, Qi B, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2017,245(4):871−878.
|
[52] |
Ding Jian, Xu Zejian, Qi Baokun, et al. Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its in vitro digestive fate as affected by (-)-epigallocatechin-3-gallate[J]. Food & Function,2018:66−75.
|
[53] |
Chen B, Mcclements D J, Decker E A. Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions[J]. Journal of Agricultural & Food Chemistry,2010,58(6):3779−3784.
|
[54] |
Nikiforidis C V, Kiosseoglou V. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions[J]. Journal of Agricultural & Food Chemistry,2010,58(1):527.
|
[55] |
Su C, Feng Y, Ye J, et al. Effect of sodium alginate on the stability of natural soybean oil body emulsions[J]. RSC Advances,2018,8(9):4731−4741. doi: 10.1039/C7RA09375F
|
[56] |
Zhang, Yang, Wang, et al. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate[J]. Molecules,2019,24(21):3856. doi: 10.3390/molecules24213856
|
[57] |
Wu N N, Huang X, Yang X Q, et al. Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling[J]. Food Hydrocolloids,2012,28(1):110−120. doi: 10.1016/j.foodhyd.2011.12.005
|
[58] |
Li Y, Liu B, Jiang L, et al. Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis[J]. Food Hydrocolloids,2019,87(2):814−829.
|
[59] |
姜梦婷, 王秋岭, 周鑫, 等. 不同油料作物油脂体氧化稳定性差异的研究[J]. 中国粮油学报,2018,33(10):63−70. doi: 10.3969/j.issn.1003-0174.2018.10.012
|
[60] |
梁新婷, 江连洲, 侯俊财, 等. 高油大豆与低油大豆油脂体组成及其稳定性的研究[J]. 中国粮油学报,2016,31(10):11−17. doi: 10.3969/j.issn.1003-0174.2016.10.003
|
[61] |
章书婷. 大豆油体工业化制备的应用研究及产品开发[D]. 广州: 华南理工大学, 2013.
|
[62] |
刘志静, 张鸿超, 赵悦含, 等. 不同源大豆油脂体对蛋黄酱组成成分及稳定性的影响[J]. 食品工业科技,2018,39(10):28−34.
|
[63] |
钟佳慧, 陈蓓蕾, 王倩, 等. 基于天然大豆油脂体-海藻酸钠的沙拉汁工艺研究[J]. 食品工业科技,2020,41(11):7−14, 20.
|
[64] |
Berry M J, Cox A R, Keenan R D, et al. Ice confection and its manufacturing process: US, EP20040763605[P]. 2006-07-12.
|
[65] |
居巧苓. 大豆油体富集物的分离及其功能性质研究[D]. 无锡: 江南大学, 2019.
|
[66] |
徐泽健, 章绍兵. 植物油体制备工艺及其稳定性研究进展[J]. 中国油脂,2016(9):41−45. doi: 10.3969/j.issn.1003-7969.2016.09.009
|
[67] |
Acevedo F, Rubilar, Mónica, Jofré, Ignacio, et al. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery[J]. Journal of Microencapsulation,2014,31(5):488−500. doi: 10.3109/02652048.2013.879931
|
[68] |
Chiang C J, Chen C J, Liou P J, et al. Selective delivery of curcumin to HER2/neu-overexpressing tumor cells using nanoscale oil body[J]. Journal of the Taiwan Institute of Chemical Engineers,2019:38−44.
|
[69] |
J Boucher, F Cengelli, D Trumbic, et al. Sorption of hydrophobic organic compounds (HOC) in rapeseed oil bodies[J]. Chemospere,2008,70:1452−1458. doi: 10.1016/j.chemosphere.2007.08.065
|
[1] | REN Yimeng, GAO Yuan, KONG Shuhua, ZHAO Jinwen, REN Dandan, MA Yichao, LIU Shu, HE Yunhai, WANG Qiukuan. Research Progress on Extraction, Separation and Purification Methods, Structural Characterization and Biological Activity of Natural Polysaccharide-polyphenol Conjugates[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060022 |
[2] | SHAN Rong, XU Xiaoyi, YIN Yongkui, GAO Xiaoyan, ZHAO Qingxue, SONG Gaochen. Research Progress in the Preparation and Biological Activity of Polysaccharide Nano-selenium[J]. Science and Technology of Food Industry, 2024, 45(18): 376-383. DOI: 10.13386/j.issn1002-0306.2023100109 |
[3] | YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217 |
[4] | WEI Bingqi, GAO Xiaoyu, LIU Yanxin, WANG Yicui. Research Progress on Structure, Biological Activity and Product Development of Ziziphus jujuba Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(12): 1-9. DOI: 10.13386/j.issn1002-0306.2023080051 |
[5] | DAI Shuang, LI Linlin, YIN Wei, WANG Le, WANG Yuwei, LIANG Jian. Research Progress on Extraction, Structure Determination, Chemical Modification and Biological Activity of Garlic Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(1): 9-17. DOI: 10.13386/j.issn1002-0306.2023060161 |
[6] | YANG Yi, ZHAO Yuan, SUN Jilu, SHAO Juanjuan. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468-479. DOI: 10.13386/j.issn1002-0306.2022070383 |
[7] | HUANG Min, MIAO Jingnan, WANG Yong, QIU Junqiang, LI Haixia. Research Progress on Extraction, Chemical Structure and Biological Activities of Oudemansiella Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(11): 434-439. DOI: 10.13386/j.issn1002-0306.2021070107 |
[8] | ZHU Rongjing, CHEN Xuefeng, LIU Huan, MENG Guangyan, DANG Yue. Research Progress on Extraction, Purification and Biological Activities of Nostoc flagelliforme Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(22): 423-432. DOI: 10.13386/j.issn1002-0306.2020090199 |
[9] | Yongshuai JING, Yuwei ZHANG, Jiaying LI, Xinru YUAN, Yuguang ZHENG, Lanfang WU, Danshen ZHANG. Research Progress of Synthesis Methods, Structural Characteristics and Biological Activities of Selenium Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(7): 374-381. DOI: 10.13386/j.issn1002-0306.2020050188 |
[10] | ZHANG Jin-yu, WANG Feng, SU Xiao-jun, LI Qing-ming, GUO Shi-yin, GUO Hong-ying, DENG Chao-yang, SHI Zhu, TANG Lan-fang. Research Progress on Structure,Biological Activity and Physicochemical Properties of Yam Polysaccharides[J]. Science and Technology of Food Industry, 2019, 40(12): 364-368. DOI: 10.13386/j.issn1002-0306.2019.12.059 |
1. |
陆源添,刘迪. 杨树桑黄与紫孢侧耳共培养胞内多糖提取工艺优化及抗氧化活性分析. 食品工业科技. 2025(02): 208-217 .
![]() | |
2. |
李明櫆,王梦娜,李占峰,彭帮柱. 基于加热回流法的香菇多糖提取工艺优化及其产品研发. 食品科技. 2024(03): 210-216 .
![]() | |
3. |
闫帅. 玫瑰多糖的提取纯化、结构表征、生物活性及应用研究进展. 食品与机械. 2024(10): 236-242 .
![]() | |
4. |
李臣亮,蔡雪莹,杨安慧. 黑虎掌菌的化学成分及其药理作用研究进展. 生物技术通报. 2024(11): 24-33 .
![]() | |
5. |
王晓岩,李刚,孔凡丽. 多脂鳞伞多糖对H22荷瘤小鼠抗肿瘤作用. 食用菌学报. 2023(01): 45-52 .
![]() | |
6. |
戴玉成. 中国多孔菌驯化栽培研究进展. 菌物研究. 2023(Z1): 151-156 .
![]() | |
7. |
王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化. 湖南农业科学. 2023(02): 1-6 .
![]() | |
8. |
张璐,李翘楚,王增利,丁强,王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化. 浙江农业学报. 2023(05): 1154-1160 .
![]() | |
9. |
桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
![]() | |
10. |
郑伊琦,张安强,张小军,梅光明,何鹏飞. 响应面优化猪苓菌核多糖超声辅助提取工艺及抗氧化活性分析. 食品工业科技. 2023(16): 255-263 .
![]() | |
11. |
杨敏,奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究. 湖北农业科学. 2023(08): 160-166 .
![]() | |
12. |
王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化(英文). Agricultural Science & Technology. 2023(03): 54-62 .
![]() | |
13. |
宋鹏炜,孙畅,丁强,王鸿磊. 裂褶菌高产胞外多糖发酵培养基优化及生物活性研究. 饲料研究. 2023(22): 86-91 .
![]() | |
14. |
李静,李雪婷,刘人鸣,王羽,朴京培,郭海勇. 榆耳主要活性成分及其生物学功能研究进展. 食品研究与开发. 2023(24): 193-200 .
![]() | |
15. |
秦瑞博,成玉飞,陈嫒,文明佳,何嘉,杜昕. 表面活性剂辅助酶法提取茶树菇多糖工艺研究. 生物化工. 2023(06): 80-84+101 .
![]() | |
16. |
杨彤,孙静,郝宸,王建瑞,刘宇. 盐胁迫下六妹羊肚菌菌丝体的理化性状. 食品与发酵工业. 2022(18): 162-167 .
![]() | |
17. |
冯小飞,朗丹,寸孟人,胡珊苑,余浪,杨斌. 2株野生木耳液体培养方法优化及其胞内多糖的抗氧化活性分析. 西南林业大学学报(自然科学). 2022(05): 96-103 .
![]() | |
18. |
莫翠园,盛丽,刘若凡,郝梅,马爱民. 虎奶菇多糖提取工艺优化、结构鉴定及抗氧化活性研究. 食品科技. 2022(09): 156-163 .
![]() | |
19. |
李兴恺,张耀根,姚皓昱,丁一飞,王诗雨,王燕玲,孙涛,雷鹏,徐虹,王瑞. 毛韧革菌胞外多糖的结构表征、抗氧化活性研究及发酵条件优化. 食品与发酵工业. 2022(21): 36-41 .
![]() | |
20. |
梅承翰,张丽英,张冰梅,陈蓓蓓. 红托竹荪多糖组分和生物活性研究进展. 中国食用菌. 2022(11): 8-11+17 .
![]() |