CHEN Zhixian, PENG Ning, ZHANG Yan. Effect of Bifidobacterium animalis subsp. lactis Bi66 on Alleviating Constipation and Regulating Gut Microbiota[J]. Science and Technology of Food Industry, 2025, 46(7): 308−314. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090193.
Citation: CHEN Zhixian, PENG Ning, ZHANG Yan. Effect of Bifidobacterium animalis subsp. lactis Bi66 on Alleviating Constipation and Regulating Gut Microbiota[J]. Science and Technology of Food Industry, 2025, 46(7): 308−314. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090193.

Effect of Bifidobacterium animalis subsp. lactis Bi66 on Alleviating Constipation and Regulating Gut Microbiota

More Information
  • Received Date: September 19, 2023
  • Available Online: February 07, 2025
  • Objective: The objective of this study was to evaluate the efficacy of Bifidobacterium animalis subsp. lactis Bi66 in alleviating constipation in mice and exploring its mechanism, thereby providing a high-quality strain for native culture resources. Methods: Male Balb/c mice were randomly divided into the control group, the constipation model group, the Bi66 group, and the BB12 group. Probiotics were orally administered to the mice for 14 days followed by loperamide administration to induce constipation. Fecal indexes, intestinal propulsive rate, and serum gastrointestinal regulatory peptides of mice were measured, and gut microbiota was analyzed by 16S rRNA gene sequencing. Result: Bifidobacterium animalis subsp. lactis Bi66 significantly increased the number of feces particles, fecal wet weight, and fecal water content (P<0.05). It also significantly reduced the time of first black stool (P<0.05) and improved the intestinal propulsive rate in constipated mice. Moreover, Bi66 significantly improved motilin (P<0.05), gastrin (P<0.01), and decreased vasoactive intestinal peptide and endothelin levels (P<0.05). The analysis of gut microbiota revealed that the administration of Bifidobacterium animalis subsp. lactis Bi66 enhanced both the abundance and diversity of intestinal flora in constipated mice. Specifically, Bi66 exhibited a remarkable reduction in Firmicutes while promoting an increase in Bacteroidetes in constipated mice. At the genus level, the relative abundances of Alistipes, Roseburia, Ligilactobacillus, Blautia, unclassified-Muribaculaceae, and Alloprevotella showed significant increase (P<0.05, P<0.01). Conclusion: Bifidobacterium animalis subsp. lactis Bi66 alleviated constipation in mice by regulating gastrointestinal regulatory peptides and gut microbiota.
  • [1]
    BHARUCHA A E, LACY B E. Mechanisms, evaluation, and management of chronic constipation[J]. Gastroenterology, 2020, 158(5):1232−1249. e3.
    [2]
    中华医学会消化病学分会胃肠动力学组, 功能性胃肠病协作组. 中国慢性便秘专家共识意见(2019, 广州)[J]. 中华消化杂志,2019,39(9):577−598. [Gastroenterology Motility Group of Digestive Disea, Cooperative Group of Functional Gastrointestinal Disorder. Chinese expert consensus on chronic constipation (2019, Guangzhou)[J]. Chinese Journal of Digestion,2019,39(9):577−598.]

    Gastroenterology Motility Group of Digestive Disea, Cooperative Group of Functional Gastrointestinal Disorder. Chinese expert consensus on chronic constipation (2019, Guangzhou)[J]. Chinese Journal of Digestion, 2019, 39(9): 577−598.
    [3]
    SUMIDA K, YAMAGATA K, KOVESDY C P. Constipation in CKD[J]. Kidney International Reports,2020,5(2):121−134. doi: 10.1016/j.ekir.2019.11.002
    [4]
    HE Y, ZHU L, CHEN J, et al. Efficacy of probiotic compounds in relieving constipation and their colonization in gut microbiota[J]. Molecules (Basel, Switzerland),2022,27(3):666. doi: 10.3390/molecules27030666
    [5]
    TANG T, WANG J, JIANG Y, et al. Bifidobacterium lactis TY-S01 prevents loperamide-induced constipation by modulating gut microbiota and its metabolites in mice[J]. Front Nutr,2022,9:890314. doi: 10.3389/fnut.2022.890314
    [6]
    DIMIDI E, CHRISTODOULIDES S, SCOTT S M, et al. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation[J]. Advances in Nutrition (Bethesda, Md),2017,8(3):484−494. doi: 10.3945/an.116.014407
    [7]
    DIMIDI E, MARK SCOTT S, WHELAN K. Probiotics and constipation:mechanisms of action, evidence for effectiveness and utilisation by patients and healthcare professionals[J]. The Proceedings of the Nutrition Society,2020,79(1):147−157. doi: 10.1017/S0029665119000934
    [8]
    WANG L, HU L, XU Q, et al. Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice[J]. International Journal of Molecular Sciences,2017,18(2):318. doi: 10.3390/ijms18020318
    [9]
    DIMIDI E, CHRISTODOULIDES S, FRAGKOS K C, et al. The effect of probiotics on functional constipation in adults:A systematic review and meta-analysis of randomized controlled trials[J]. Am J Clin Nutr,2014,100(4):1075−1084. doi: 10.3945/ajcn.114.089151
    [10]
    WANG L, HU L, XU Q, et al. Bifidobacteria exert species-specific effects on constipation in BALB/c mice[J]. Food & Function,2017,8(10):3587−3600.
    [11]
    TAYE Y, DEGU T, FESSEHA H, et al. Isolation and identification of lactic acid bacteria from cow milk and milk products[J]. The Scientific World Journal,2021,2021(1):4697445.
    [12]
    WANG L L, CHEN E L, CUI S M, et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice[J]. Frontiers in Microbiology,2019,10:1721. doi: 10.3389/fmicb.2019.01721
    [13]
    YI R, PENG P, ZHANG J, et al. Lactobacillus plantarum CQPC02-fermented soybean milk improves loperamide-induced constipation in mice[J]. Journal of Medicinal Food,2019,22(12):1208−1221. doi: 10.1089/jmf.2019.4467
    [14]
    QIAO Y, QIU Z, TIAN F, et al. Pediococcus acidilactici strains improve constipation symptoms and regulate intestinal flora in mice[J]. Front Cell Infect Microbiol,2021,11:655258. doi: 10.3389/fcimb.2021.655258
    [15]
    WANG L, CHAI M, WANG J, et al. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice[J]. Food & Function,2022,13(9):5037−5049.
    [16]
    唐田, 沈真如, 石璐, 等. 植物乳杆菌P9对小鼠功能性便秘的作用及机制[J]. 食品科学,2023,44(9):123−130. [TANG W, SHEN Z R, SHI L, et al. Effect and mechanism of Lactiplantibacillus plantarum P9 on functional constipation in mice[J]. Food Science,2023,44(9):123−130.] doi: 10.7506/spkx1002-6630-20220620-199

    TANG W, SHEN Z R, SHI L, et al. Effect and mechanism of Lactiplantibacillus plantarum P9 on functional constipation in mice[J]. Food Science, 2023, 44(9): 123−130. doi: 10.7506/spkx1002-6630-20220620-199
    [17]
    GUO Y, SONG L, HUANG Y, et al. Latilactobacillus sakei Furu2019 and stachyose as probiotics, prebiotics, and synbiotics alleviate constipation in mice[J]. Front Nutr,2023,9:1039403. doi: 10.3389/fnut.2022.1039403
    [18]
    YIN J, LIANG Y, WANG D, et al. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation[J]. International Journal of Molecular Medicine,2018,41(2):649−658.
    [19]
    唐晓姝, 陈雪梅, 胡博, 等. 黑果腺肋花楸汁对便秘小鼠肠道功能的改善作用[J]. 中国食品学报,2022,22(12):125−133. [TANG X S, CHEN X M, HU B, et al. Ameliorating effect of Aronia melanocarpa juice on intestinal function in constipated mice[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(12):125−133.]

    TANG X S, CHEN X M, HU B, et al. Ameliorating effect of Aronia melanocarpa juice on intestinal function in constipated mice[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(12): 125−133.
    [20]
    JANDHYALA S M, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota[J]. World Journal of Gastroenterology,2015,21(29):8787−8803. doi: 10.3748/wjg.v21.i29.8787
    [21]
    YI R, ZHOU X, LIU T, et al. Amelioration effect of Lactobacillus plantarum KFY02 on low-fiber diet-induced constipation in mice by regulating gut microbiota[J]. Front Nutr,2022,9:938869. doi: 10.3389/fnut.2022.938869
    [22]
    JIANG T, LU W, FANG Z, et al. Bifidobacterium treated by electrostatic spray drying relieved constipation by changing the relative abundance of bacteria associated with gastrointestinal regulatory peptides[J]. Front Cell Infect Microbiol,2022,12:894216. doi: 10.3389/fcimb.2022.894216
    [23]
    LIN X, LIU Y, MA L, et al. Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice[J]. Journal of Translational Medicine,2021,19(1):317. doi: 10.1186/s12967-021-02995-z
    [24]
    ZHANG X, YANG H, ZHENG J, et al. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice[J]. Carbohydrate Polymers,2021,253:117218. doi: 10.1016/j.carbpol.2020.117218
    [25]
    ZHANG Q, ZHONG D, SUN R, et al. Prevention of loperamide induced constipation in mice by KGM and the mechanisms of different gastrointestinal tract microbiota regulation[J]. Carbohydrate Polymers,2021,256:117418. doi: 10.1016/j.carbpol.2020.117418
    [26]
    HE Q, HAN C, HUANG L, et al. Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation[J]. Journal of Cellular and Molecular Medicine,2020,24(16):9349−9361. doi: 10.1111/jcmm.15586
    [27]
    GAO X, HU Y, TAO Y, et al. Cymbopogon citratus (DC.) Stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota[J]. Front Microbiol,2022,13:1017804. doi: 10.3389/fmicb.2022.1017804
    [28]
    HOOPER L V, WONG M H, THELIN A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science (New York, NY),2001,291(5505):881−884. doi: 10.1126/science.291.5505.881
    [29]
    ZHAO L, HUANG Y, LU L, et al. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats[J]. Microbiome,2018,6(1):107. doi: 10.1186/s40168-018-0492-6
    [30]
    ZHENG J, WITTOUCK S, SALVETTI E, et al. A taxonomic note on the genus Lactobacillus:Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. International Journal of Systematic and Evolutionary Microbiology,2020,70(4):2782−2858. doi: 10.1099/ijsem.0.004107
    [31]
    LIU X, MAO B, GU J, et al. Blautia-a new functional genus with potential probiotic properties?[J]. Gut Microbes,2021,13(1):1−21.
  • Related Articles

    [1]ZUO Yifan, XIAO Meng, SU Xiangping, ZOU Kun, LIU Lingyan, TAN Yali, LI Xiao, YANG Jing, ZHENG Zejiang. Effect to Intestinal Microbiota Regulation and Laxative Function to Lactobacillus paracasei[J]. Science and Technology of Food Industry, 2024, 45(21): 329-337. DOI: 10.13386/j.issn1002-0306.2023090175
    [2]XIANG Qingru, LI Wenyuan, FENG Tao. Regulating Effects of Dietary Fiber and Powder of Agaricus bisporus Based on in Vitro Fermentation on Human Gut Microbiota[J]. Science and Technology of Food Industry, 2023, 44(10): 130-137. DOI: 10.13386/j.issn1002-0306.2022080226
    [3]CHEN Yuzi, TAN Lehe, LIU Qibing, WU Gang, ZHANG Yanjun, XU Fei, ZHU Kexue. Modulatory Effect of Polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) Pulp on Gut Microbiota in Mice[J]. Science and Technology of Food Industry, 2022, 43(24): 189-196. DOI: 10.13386/j.issn1002-0306.2022030215
    [4]XU Hezhixiang, YANG Xiaojun, SHA Dixin, MEDINA Wuxiuer. Effects of Special Milk Powder for Gastrointestinal Tract Conditioning on Intestinal Motility and Microflora Composition in Constipation Mice[J]. Science and Technology of Food Industry, 2022, 43(22): 144-154. DOI: 10.13386/j.issn1002-0306.2022010005
    [5]LI Quancen, XIAO Meifang, LIU Bin, CHEN Haiming, ZENG Feng. Research Progress of Polysaccharides from Edible and Medicinal Fungi in Regulating Lipid Metabolism through Gut Microbiota[J]. Science and Technology of Food Industry, 2022, 43(16): 476-485. DOI: 10.13386/j.issn1002-0306.2021080196
    [6]ZHONG Qian-gui, QIU Ming-meng, YANG Juan, YANG Li-zhi, GE Yong-kun, JIANG Yu-ji, CHEN Bing-zhi. Effects of Hericium erinaceus Polysaccharides on the Growth of Gastrointestinal Probiotics[J]. Science and Technology of Food Industry, 2019, 40(19): 301-304,309. DOI: 10.13386/j.issn1002-0306.2019.19.052
    [7]CHANG Hua-song, YUAN Wen-wen, XUAN Hong-zhuan, WANG Kai. Research Progress on Absorption and Metabolism of Flavonoids and Their Effects on the Gastrointestinal Tract Function[J]. Science and Technology of Food Industry, 2019, 40(18): 340-347. DOI: 10.13386/j.issn1002-0306.2019.18.054
    [8]LI Shu-fan, LI Xin, HAN Jiao-jiao, LU Chen-yang, ZHOU Jun, LI Ye, SU Xiu-rong, CHEN Yi-fang, WANG Qiu-juan. Anti-Fatigue and Gut Microbiota Modulation Effects of Tuna Dark Meat Hydrolysate in Mice[J]. Science and Technology of Food Industry, 2019, 40(17): 314-320,326. DOI: 10.13386/j.issn1002-0306.2019.17.052
    [9]CHEN Jia-jie, WU Wen-hui, NI Ling, YAN Ting, ZHAO Qing-bo, BAO Bin. Nutritional characteristics of silkworm pupae protein and peptides after simulated gastric and simulated intestinal digestion in vitro[J]. Science and Technology of Food Industry, 2014, (01): 333-338. DOI: 10.13386/j.issn1002-0306.2014.01.004
    [10]GU Min, ZHAO Mou-ming, WANG Xi, CHEN Xiao-feng, REN Jiao-yan. Research of frog antioxidant peptide and the activity of gastrointestinal digestion[J]. Science and Technology of Food Industry, 2013, (23): 196-200. DOI: 10.13386/j.issn1002-0306.2013.23.005

Catalog

    Article Metrics

    Article views (37) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return