XU Hezhixiang, YANG Xiaojun, SHA Dixin, et al. Effects of Special Milk Powder for Gastrointestinal Tract Conditioning on Intestinal Motility and Microflora Composition in Constipation Mice[J]. Science and Technology of Food Industry, 2022, 43(22): 144−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010005.
Citation: XU Hezhixiang, YANG Xiaojun, SHA Dixin, et al. Effects of Special Milk Powder for Gastrointestinal Tract Conditioning on Intestinal Motility and Microflora Composition in Constipation Mice[J]. Science and Technology of Food Industry, 2022, 43(22): 144−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010005.

Effects of Special Milk Powder for Gastrointestinal Tract Conditioning on Intestinal Motility and Microflora Composition in Constipation Mice

More Information
  • Received Date: January 03, 2022
  • Available Online: September 18, 2022
  • Objective: To study the effect of special milk powder for gastrointestinal tract conditioning on intestinal bowel and intestinal microflora. Methods: After the preparation of special milk powder for gastrointestinal tract conditioning, KM mice were used as the experimental object to establish constipation models with loperamide hydrochloride. The general state, intestinal propulsion rate, defecation situation, and observation of intestinal tissue were used as the investigation indicators, and 16S rRNA gene sequencing was used to analyze the feces of mice to investigate its effects on the bowel movement and intestinal flora of mice. Results: Each dose of special milk powder for gastrointestinal tract conditioning could shorten the time of first defecation in mice (P<0.05) and improve the small intestine thrust rate (P<0.05), but did not damage the goblet cell structure of small intestine in mice. With the increasing of dose, the gastrointestinal conditioning effect of milk powder was better. Although the gastrointestinal tract conditioning special milk powder did not significantly change the richness and evenness of intestinal microbes, it could significantly change the composition of intestinal microecological structure of mice, and significantly increase the relative abundance of some probiotics, Lactobacillus and Bifidobacterium. Conclusion: Special milk powder for gastrointestinal tract conditioning could affect intestinal movement and regulate intestinal flora structure to improve constipation induce by loperamide.
  • [1]
    孙燕明. 乳企加码中老年奶粉功能化、配方化是大势所趋[J]. 中国食品,2021(22):82−83. [SUN Yanming. It is the general trend for dairy enterprises to add functional and formula milk powder for middle-aged and old people[J]. China Food,2021(22):82−83. doi: 10.3969/j.issn.1000-1085.2021.22.038
    [2]
    龙晓蕾, 刘美佟, 尹晓晨, 等. 含益生元配方奶粉对婴儿肠道微生态的影响[J]. 实用预防医学,2020,27(8):954−956. [LONG Xiaolei, LIU Meitong, YIN Xiaochen, et al. Effect of prebiotic-containing milk powder on intestinal microecology of infants[J]. Practical Preventive Medicine,2020,27(8):954−956. doi: 10.3969/j.issn.1006-3110.2020.08.016
    [3]
    CAMARGO NOVAES S S, HELLMEISTER DANTAS F B, ALVIM I D, et al. Experimental method to obtain a uniform food powder mixture of omega-3 microcapsules and whole milk powder[J]. Lebensmittel-Wissenschaft und-Technologie/Food Science and Technology,2018(12):37.
    [4]
    赵若春, 赵晓勤, 毛开云. 我国功能性低聚糖产业发展现状及发展趋势分析[J]. 生物产业技术,2018(6):5−8. [ZHAO Ruochun, ZHAO Xiaoqin, MAO Kaiyun. Development status and trend analysis of functional oligosaccharide industry in China[J]. Biotechnology,2018(6):5−8.
    [5]
    BOUILLON G A, GÅSERØD O, RATTRAY F P. Evaluation of the inhibitory effect of alginate oligosaccharide on yeast and mould in yoghurt[J]. International Dairy Journal,2019,99:104554. doi: 10.1016/j.idairyj.2019.104554
    [6]
    ICHINOSE T, KATO M, MATSUZAKI K, et al. Beneficial effects of docosahexaenoic acid-enriched milk beverage intake on cognitive function in healthy elderly Japanese: A 12-month randomized, double-blind, placebo-controlled trial[J]. Journal of Functional Foods,2020,74:104195. doi: 10.1016/j.jff.2020.104195
    [7]
    金磊. 富含共轭亚油酸酸奶的特性研究[D]. 南昌: 南昌大学, 2015

    JIN Lei. Study on characteristics of yoghourt rich in conjugated linoleic acid[D]. Nanchang: Nanchang University, 2015.
    [8]
    CATENZA K F, DONKOR K K. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review[J]. Food Chemistry,2021,355(2):129416.
    [9]
    YANG H J. The function and application of xylo-oligosaccharides in large healthy foods[J]. Fine and Specialty Chemicals,2017,25(11):14−16.
    [10]
    ZHANG P, ZHANG M, KAIXIANG M A, et al. The effects of commonly used prebiotics on the growth of three strains of probiotics in vitro[J]. Chinese Journal of Microecology,2019,31(1):21−24.
    [11]
    田洪民, 王淑屏. 低聚果糖联合锌制剂对小儿迁延性腹泻的治疗效果及对其肠道菌群结构的影响[J]. 中国微生态学杂志,2020,32(5):575−579. [TIAN Hongmin, WANG Shuping. Effect of fructose-oligosaccharides combined with zinc preparation on intestinal microflora structure of children with persistent diarrhea[J]. Chinese Journal of Microecology,2020,32(5):575−579. doi: 10.13381/j.cnki.cjm.202005017
    [12]
    李红. 低聚糖在功能性食品中的应用研究进展[J]. 现代食品,2021(11):55−57. [LI Hong. Research progress on the application of oligosaccharides in functional food[J]. Modern Food,2021(11):55−57. doi: 10.16736/j.cnki.cn41-1434/ts.2021.11.017
    [13]
    SINGLA V, CHAKKARAVARTHI S. Applications of prebiotics in food industry: A review[J]. Food Science and Technology International,2017,23(8):15−17.
    [14]
    HANAU S, ALMUGADAM S H, SAPIENZA E, et al. Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones[J]. Carbohydrate Polymer Technologies and Applications,2020(1):100013.
    [15]
    MIAO C, SHUJUN L, UDDIN I K M S, et al. The effect of xylooligosaccharide, xylan, and whole wheat bran on the human gut bacteria[J]. Frontiers in Microbiology,2020,11:568457. doi: 10.3389/fmicb.2020.568457
    [16]
    余梦为, 郦萍, 付碧石, 等. 共轭亚油酸生物合成及其对肠道菌群影响的研究进展[J]. 食品科技,2020,45(3):28−35. [YU Mengwei, LI Ping, FU Bishi, et al. Biosynthesis of conjugated linoleic acid and its effects on intestinal flora: A review[J]. Food Science and Technology,2020,45(3):28−35. doi: 10.13684/j.cnki.spkj.2020.03.010
    [17]
    侯艳梅, 刘柯驿, 周天啸. 一种促进肠道健康的配方奶粉: 中国, 107668208A[P]. 2018-02-09

    HOU Yanmei, LIU Keyi, ZHOU Tianxiao. A formula to promote intestinal health: China, 107668208A[P]. 2018-02-09.
    [18]
    刘绍君, 沈五雄. 一种益于中老年人肠道健康的奶粉: 中国, 107212097A[P]. 2017-09-29

    LIU Shaojun, SHEN Wuxiong. A kind of milk powder beneficial to the intestinal health of middle-aged and old people: China, 107212097A[P]. 2017-09-29.
    [19]
    黄新红, 张丽茹, 张雪, 等. 一种中老年配方奶粉: 中国, 111602720A[P]. 2020-09-01

    HUANG Xinhong, ZHANG Liru, ZHANG Xue, et al. A formula milk powder for middle-aged and old people: China, 111602720A[P]. 2020-09-01.
    [20]
    MAGANHA L C, ROSIM R E, CORASSIN C H, et al. Viability of probiotic bacteria in fermented skim milk produced with different levels of milk powder and sugar[J]. International Journal of Dairy Technology,2014,67(1):89−94. doi: 10.1111/1471-0307.12087
    [21]
    ANGELES-AGDEPPA I. Do probiotics and fibre in milk powder have an effect on functional constipation and general wellbeing of Filipino mothers?[J]. Malaysian Journal of Nutrition,2018,24(1):125−137.
    [22]
    方圆之, 高杰. 白芍的通便作用及其对便秘小鼠结肠AQP4、VIP表达的影响[J]. 山东中医杂志,2017,36(1):62−65. [FANG Yuanzhi, GAO Jie. Effect of Paeonia lactiflora on the expression of AQP4 and VIP in colon of constipation mice[J]. Shandong Journal of Traditional Chinese Medicine,2017,36(1):62−65. doi: 10.16295/j.cnki.0257-358x.2017.01.050
    [23]
    彭禛菲, 阿依姑丽·艾合麦提, 王妙颖, 等. 野山杏果肉不溶性膳食纤维对小鼠肠道功能及肠道菌群的影响[J]. 食品工业科技,2020,41(8):307−310. [PENG Zhenfei, AYIGULI Aihemetti, WANG Miaoying, et al. Effects of insoluble dietary fiber of wild apricot pulp on intestinal function and intestinal microflora in mice[J]. Science and Technology of Food Industry,2020,41(8):307−310. doi: 10.13386/j.issn1002-0306.2020.08.049
    [24]
    黄小丽, 陈琳, 陈晨, 等. 3种便秘模型的比较研究[J]. 四川动物,2015,34(1):111−116. [HUANG Xiaoli, CHEN Lin, CHEN Chen, et al. Comparative study of three constipation models[J]. Sichuan Zoology,2015,34(1):111−116. doi: 10.3969/j.issn.1000-7083.2015.01.020
    [25]
    李艳莉. 低聚糖对婴儿肠道菌群的益生功能[D]. 哈尔滨: 东北农业大学, 2012

    LI Yanli. Prebiotic function of oligosaccharides on intestinal flora of infants[D]. Harbin: Northeast Agricultural University, 2012.
    [26]
    ASTUDILLO-GARCíA C, HERMANS S M, STEVENSON B, et al. Microbial assemblages and bioindicators as proxies for ecosystem health status: Potential and limitations[J]. Applied Microbiology and Biotechnology,2019,103(16):6407−6410. doi: 10.1007/s00253-019-09963-0
    [27]
    SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology,2011,12(6):1−18.
    [28]
    WANG L, HU L, YAN S, et al. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation[J]. Food & Function,2017,8(5):1966−1978.
    [29]
    翟红梅, 房新平. 益生元奶粉对便秘大鼠润肠排毒功能的影响研究[J]. 产业与科技论坛,2014,13(6):64−66. [ZHAI Hongmei, FANG Xinping. Effect of prebiotic milk powder on intestinal detoxification in constipation rats[J]. Industry & Science & Technology Forum,2014,13(6):64−66. doi: 10.3969/j.issn.1673-5641.2014.06.030
    [30]
    刘萌颖. 婴儿配方奶粉中低聚糖对肠道益生功能的影响[D]. 哈尔滨: 东北农业大学, 2018

    LIU Mengying. Effects of oligosaccharides in infant formula on intestinal probiotics[D]. Harbin: Northeast Agricultural University, 2018.
    [31]
    李彤, 黄芳, 陈杰东, 等. 共轭亚油酸对高脂饲料诱导肥胖大鼠脂质蓄积和肠道菌群的影响[J]. 食品工业科技,2022,43(2):346−353. [LI Tong, HUANG Fang, CHEN Jiedong, et al. Effects of conjugated linoleic acid on lipid accumulation and intestinal microflora in obese rats induced by high fat diet[J]. Science and Technology of Food Industry,2022,43(2):346−353. doi: 10.13386/j.issn1002-0306.2021040049
    [32]
    杨若言, 张帆, 靳镓熙, 等. 饮食与肠道菌群关系的研究进展[J]. 中国微生态学杂志,2020,32(9):1113−1117. [YANG Ruoyan, ZHANG Fan, JIN Ganxi, et al. Research progress on the relationship between diet and intestinal flora[J]. Chinese Journal of Microecology,2020,32(9):1113−1117. doi: 10.13381/j.cnki.cjm.202009026
    [33]
    陈远东, 卢红艳, 常明, 等. 低聚半乳糖对早产大鼠肠道菌群的调节作用[J]. 重庆医学,2017,46(8):1015−1016. [CHEN Yuandong, LU Hongyan, CHANG Ming, et al. Effects of galactose oligosaccharide on intestinal microflora in preterm rats[J]. Chongqing Medical Journal,2017,46(8):1015−1016. doi: 10.3969/j.issn.1671-8348.2017.08.003
    [34]
    SINGH D P, SINGH J, BOPARAI R K, et al. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice[J]. Pharmacological Research,2017,9(123):103−113.
    [35]
    钱成, 王鸿超, 张秋香, 等. 含共轭亚油酸功能组分配方对慢性肠炎的改善作用[J]. 食品与发酵工业,2020,46(17):87−93. [QIAN Cheng, WANG Hongchao, ZHANG Qiuxiang, et al. Effects of conjugated linoleic acid on chronic enteritis[J]. Food and Fermentation Industries,2020,46(17):87−93. doi: 10.13995/j.cnki.11-1802/ts.023611
    [36]
    赵铭琪, 张宏达, 王立娜, 等. 婴儿配方乳粉中低聚糖添加量对肠道益生功能的影响[J]. 食品科技,2019,44(1):63−67. [ZHAO Mingqi, ZHANG Hongda, WANG Lina, et al. Effects of dietary oligosaccharides in infant formula milk powder on intestinal probiotics[J]. Food Science and Technology,2019,44(1):63−67. doi: 10.13684/j.cnki.spkj.2019.01.011
    [37]
    ANGELIKI K, CHRISTOS C, CHRISTINA O, et al. The effect of a fructo-oligosaccharide supplemented formula on gut flora of preterm infants[J]. Early Human Development,2007,83(5):335−339. doi: 10.1016/j.earlhumdev.2006.07.003
    [38]
    周水岳. 低聚糖对幼龄动物生产性能、血液生化指标和养分利用的影响[D]. 长沙: 湖南农业大学, 2018

    ZHOU Shuiyue. Effects of oligosaccharides on performance, blood biochemical indices and nutrient utilization of young animals[D]. Changsha: Hunan Agricultural University, 2018.
    [39]
    FINEGOLD S M, LI Z, SUMMANEN P H, et al. Xylooligosaccharide increases Bifidobacteria but not Lactobacilli in human gut microbiota[J]. Food & Function,2014,5(3):436.
    [40]
    HARTIGH D, LAURA. Obese mice losing weight due to trans-10, cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiota[J]. The Journal of Nutrition: Official Organ of the American Institute of Nutrition,2018,148(4):562−572.
    [41]
    MA Z, LI L, GOTELLI N J. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases[J]. The ISME Journal,2019,8(8):13.
    [42]
    DAN Z, MAO X, LIU Q, et al. Altered gut microbial profile is associated with abnormal metabolism activity of autism spectrum disorder[J]. Gut Microbes,2020,11(5):1−22.
    [43]
    PINN D M, ARONIADIS O C, BRANDT L J. Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)?[J]. Neurogastroenterol Motil,2015,27(1):19−29. doi: 10.1111/nmo.12479
    [44]
    ZHANG S, WANG R, LI D, et al. Role of gut microbiota in functional constipation[J]. Gastroenterology Report,2021,9(5):35−36.
    [45]
    WAHLSTRÖM A, SAYIN SAMA I, MARSCHALL H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism,2016,24(1):41−50. doi: 10.1016/j.cmet.2016.05.005
    [46]
    JALANKA J, MAJOR G, MURRAY K, et al. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls[J]. International Journal of Molecular Sciences,2019,20(2):15−17.
    [47]
    MAKIZAKI Y, UEMOTO T, YOKOTA H, et al. Improvement of loperamide-induced slow transit constipation by Bifidobacterium bifidum G9-1 is mediated by the correction of butyrate production and neurotransmitter profile due to improvement in dysbiosis[J]. PloS One,2021,16(3):e0248584. doi: 10.1371/journal.pone.0248584
    [48]
    BENNET S, BOHN L, STRSRUD S, et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs[J]. Gut,2018,67(5):872−881. doi: 10.1136/gutjnl-2016-313128
    [49]
    WANG J, YAO S. Roles of gut microbiota and metabolites in pathogenesis of functional constipation[J]. Evidence-based Complementary and Alternative Medicine:eCAM,2021,2021:5560310.
    [50]
    ALEXANDER M, TURNBAUGH P J. Deconstructing mechanisms of diet-microbiome-immune interactions[J]. Immunity,2020,53(2):264−276. doi: 10.1016/j.immuni.2020.07.015
    [51]
    ZHANG Q, ZHONG D, REN Y Y, et al. Effect of konjac glucomannan on metabolites in the stomach, small intestine and large intestine of constipated mice and prediction of the KEGG pathway[J]. Food & Function,2021,7(7):12.
    [52]
    XIE L, XU C, FAN Y, et al. Effect of fecal microbiota transplantation in patients with slow transit constipation and the relative mechanisms based on the protein digestion and absorption pathway[J]. Journal of Translational Medicine,2021,19(1):490. doi: 10.1186/s12967-021-03152-2
    [53]
    LI H, CHEN J, REN X, et al. Gut microbiota composition changes in constipated women of reproductive age[J]. Frontiers in Cellular and Infection Microbiology,2021,53(2):264−276.
    [54]
    KUBOTA, ITO, TOMIMOTO, et al. Lactobacillus reuteri DSM 17938 and magnesium oxide in children with functional chronic constipation: A double-blind and randomized clinical trial[J]. Nutrients,2020,12(1):225. doi: 10.3390/nu12010225
    [55]
    GE X, ZHAO W, DING C, et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility[J]. Scientific Reports,2017,7(1):441. doi: 10.1038/s41598-017-00612-y
    [56]
    HUSEBYE E, HELLSTRÖM P M, MIDTVEDT T. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex[J]. Dig Dis,1994,39(5):946−956. doi: 10.1007/BF02087542
    [57]
    EH E, HELLSTRM P M, SUNDLER F, et al. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2001,280(3):368−380. doi: 10.1152/ajpgi.2001.280.3.G368
    [58]
    STRATI F, CAVALIERI D, ALBANESE D, et al. New evidences on the altered gut microbiota in autism spectrum disorders[J]. Microbiome,2017,5(24):24.
  • Cited by

    Periodical cited type(6)

    1. 洪梦杰,景奕文,于白音,张朝玉,石海英,常圣鑫. 基于网络药理学和分子对接探讨葛根素抗炎的关键靶点. 韶关学院学报. 2025(02): 41-46 .
    2. 鲁森,王瑞,高雄,林慧纯,陈忠正,张媛媛,陈旭洁,黄秋颜,李斌,林晓蓉. 基于高分辨质谱和网络药理学探究南昆山毛叶红茶的抗炎机理. 食品工业科技. 2024(02): 30-39 . 本站查看
    3. 李思蒙,田荣,殷明婧,谷巍. 基于网络药理学和分子对接探讨中药芫花治疗原发性痛经的作用机制. 亚热带植物科学. 2024(01): 31-39 .
    4. 李镁娟,张军,张云数,李乾伟,张娜,刘梦娇,张人平. 网络药理学结合分子对接技术揭示芹菜籽抑制痛风的潜在分子机制. 食品与机械. 2024(03): 44-51 .
    5. 张淼,黄菲,江思思,刘小芬. 闽台“一条根”类青草药次生代谢产物研究进展. 中国民族民间医药. 2023(16): 62-67 .
    6. 殷春燕,董占军,陈江魁. 基于网络药理学和分子对接技术研究花生红衣多酚抗动脉粥样硬化的作用机制. 食品与发酵工业. 2023(20): 242-249 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (203) PDF downloads (13) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return