LI Quancen, XIAO Meifang, LIU Bin, et al. Research Progress of Polysaccharides from Edible and Medicinal Fungi in Regulating Lipid Metabolism through Gut Microbiota[J]. Science and Technology of Food Industry, 2022, 43(16): 476−485. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080196.
Citation: LI Quancen, XIAO Meifang, LIU Bin, et al. Research Progress of Polysaccharides from Edible and Medicinal Fungi in Regulating Lipid Metabolism through Gut Microbiota[J]. Science and Technology of Food Industry, 2022, 43(16): 476−485. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080196.

Research Progress of Polysaccharides from Edible and Medicinal Fungi in Regulating Lipid Metabolism through Gut Microbiota

More Information
  • Received Date: August 18, 2021
  • Available Online: June 07, 2022
  • Obesity and hyperlipidemia have become serious public health problems in today's society. Studies have found that edible and medicinal fungi polysaccharides can promote the proliferation of probiotics in the intestines, inhibit the growth of harmful bacteria, improve the intestinal flora, and play a role in regulating lipid metabolism. But at present, its specific mechanism has not been determined and unified in regulating lipid metabolism. This article mainly focused on the interaction and effects between polysaccharides of edible and medicinal bacteria, gut microbiota and lipid metabolism, as well as the possible mechanism of edible and medicinal fungi polysaccharides in regulating lipid metabolism through gut microbiota, mainly including the short-chain fatty acid pathway and the activity of reducing inflammation are reviewed. The aim of this study would provide a reference for the utilization of active ingredients of edible and medicinal fungi and the research and development of nutritional functional foods.
  • [1]
    王茹, 曹乾, 兰莹利, 等. 2011年与2015年我国成人超重和肥胖近期流行趋势分析[J]. 中国预防医学杂志,2020,21(1):22−26. [WANG R, CAO Q, LAN Y L et al. The epidemic trend of overweight and obesity of adults in China in 2011 and 2015[J]. Chinese Preventive Medicine,2020,21(1):22−26.

    WANG R, CAO Q, LAN Y L et al. The epidemic trend of overweight and obesity of adults in China in 2011 and 2015[J]. Chinese Preventive Medicine, 2020, 21(1): 22-26.
    [2]
    CHEN C, CUI Q M, ZHANG X, et al. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: Emerging insights in obesity[J]. Cellular Signalling,2018,51:47−58. doi: 10.1016/j.cellsig.2018.07.012
    [3]
    孙倩, 万向元. 益生菌缓解高血脂和高血糖的研究进展[J]. 河南工业大学学报(自然科学版),2018,39(6):125−132. [SUN Q, WAN X Y. Research advances on the alleviation of hyperlipidemia and hyperglycemia by probiotics[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(6):125−132.

    SUN Q, WAN X Y. Research advances on the alleviation of hyperlipidemia and hyperglycemia by probiotics[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(6): 125-132.
    [4]
    SUN L, BAO L, PHURBU D, et al. Amelioration of metabolic disorders by a mushroom-derived polyphenol correlates with the reduction of Ruminococcaceae in gut of DIO mice[J]. Food Science and Human Wellness,2021,10(4):442−451. doi: 10.1016/j.fshw.2021.04.006
    [5]
    RODRIGUEZ S P, DIAZ R B, GONZAKEZ M M J, et al. Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii[J]. LWT-Food Science and Technology,2019,101:774−782. doi: 10.1016/j.lwt.2018.11.062
    [6]
    ZHAO H Q, LAI C J S, YU Y, et al. Acidic hydrolysate fingerprints based on HILIC-ELSD/MS combined with multivariate analysis for investigating the quality of Ganoderma lucidum polysaccharides[J]. International Journal of Biological Macromolecules,2020,163:476−484. doi: 10.1016/j.ijbiomac.2020.06.206
    [7]
    GOSWAMI B, MAJUMDAR S, DAS A, et al. Evaluation of bioactive properties of Pleurotus ostreatus mushroom protein hydrolysate of different degree of hydrolysis[J]. LWT- Food Science and Technology,2021,149:111768. doi: 10.1016/j.lwt.2021.111768
    [8]
    田淑雨. 灵芝活性成分的提取分离纯化及抗氧化活性研究[D]. 聊城: 聊城大学, 2019

    TIAN S Y. Study on extraction, isolation, and antioxidant activities of active compositions from Ganoderma lucidum[D]. Liaocheng: Liaocheng University, 2019.
    [9]
    汪梦雯. 灵芝、香菇和茯茶多糖的提取、结构表征及降糖活性研究[D]. 西安: 陕西科技大学, 2021

    WANG M W. Optimization of extraction technology and biological activity of polysaccharides from Ganoderma lucidum, Lentinus edodes and Fu brick tea[D]. Xi'an: Shaanxi University of Science and Technology, 2021.
    [10]
    ASGIS K N, SURAJIT S, SAIKAT M, et al. Antioxidant and immunostimulantβ-glucan from edible mushroom Russula albonigra (Krombh.) Fr.[J]. Carbohydrate Polymers,2014,99(2):774−782.
    [11]
    PRASENTJIT M, IPSITA K S, INDRANIL C, et al. Biologically active polysaccharide from edible mushrooms: A review[J]. International Journal of Biological Macromolecules,2021,172:408−417. doi: 10.1016/j.ijbiomac.2021.01.081
    [12]
    陈文博. 西藏绵头雪莲花多糖的结构鉴定及生物活性的研究[D]. 广州: 华南理工大学, 2020

    CHEN W B. Structural elucidation and the biological activity of polysaccharides from Saussurea laniceps[D]. Guangzhou: South China University of Technology, 2019.
    [13]
    王银平. 玉木耳多糖的制备、结构表征及其与乳清蛋白相互作用研究[D]. 长春: 吉林大学, 2020

    WANG Y P. Preparation and structural characterization of polysaccharides from Auricularia cornea var. Li. and their interactions with whey protein[D]. Changchun: Jilin University, 2020.
    [14]
    BAO H, YOU S G, CAO L, et al. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae[J]. Food Hydrocolloids,2016,57:30−37. doi: 10.1016/j.foodhyd.2015.12.031
    [15]
    吴龙月, 陈瑶, 向福, 等. 杏鲍菇多糖的酶法提取及其保湿和抗氧化活性评价[J]. 中国酿造,2017,36(5):161−165. [WU L Y, CHEN Y, XIANG F et al. Optimization of enzyme extraction conditions of polysaccharide from Pleurotus eryngii and its moisture retention and antioxidant activity[J]. China Brewing,2017,36(5):161−165. doi: 10.11882/j.issn.0254-5071.2017.05.034

    WU L Y, CHEN Y, XIANG F et al. Optimization of enzyme extraction conditions of polysaccharide from Pleurotus eryngii and its moisture retention and antioxidant activity[J]. China Brewing, 2017, 36(5): 161-165. doi: 10.11882/j.issn.0254-5071.2017.05.034
    [16]
    揣东华, 王洪杰, 张胜抗, 等. 响应面法优化杏鲍菇多糖提取工艺[J]. 食品研究与开发,2018,39(7):47−51. [CHUAI D H, WANG H J, ZHANG S K, et al. Optimization of Pleurotus eryngji polysaccharide extraction process by response surface mthod[J]. Food Research and Development,2018,39(7):47−51. doi: 10.3969/j.issn.1005-6521.2018.07.008

    CHUAI D H, WANG H J, ZHANG S K, et al. Optimization of Pleurotus eryngji polysaccharide extraction process by response surface mthod[J]. Food Research and Development, 2018, 39(7): 47-51. doi: 10.3969/j.issn.1005-6521.2018.07.008
    [17]
    滕春丽, 颜蜜, 向瑞琪, 等. 红托竹荪多糖的提取优化及膜分级分离的研究[J]. 食品安全质量检测学报,2021,12(12):4984−4990. [TENG C L, YAN M, XIANG R Q, et al. Study on optimization of extraction and membrane fractionation of polysaccharide from Dictyophora rubrovolvata[J]. Journal of Food Safety & Quality,2021,12(12):4984−4990.

    TENG C L, YAN M, XIANG R Q, et al. Study on optimization of extraction and membrane fractionation of polysaccharide from Dictyophora rubrovolvata[J]. Journal of Food Safety & Quality, 2021, 12(12): 4984-4990.
    [18]
    马传贵, 张志秀, 孙思胜, 等. 食用菌的活性成分及其物理提取技术研究[J]. 中国果菜,2021,41(6):94−100. [MA C G, ZHANG Z X, SUN S S, et al. Study on active components and physica extraction technologies of edible fungi[J]. China Fruit & Vegetable,2021,41(6):94−100.

    MA C G, ZHANG Z X, SUN S S, et al. Study on active components and physica extraction technologies of edible fungi[J]. China Fruit & Vegetable, 2021, 41(6): 94-100.
    [19]
    殷微. 榛蘑多糖提取理化特征及抗氧化活性研究[D]. 长春: 长春师范大学, 2020

    YIN W. Research on physicochenical characteristics and antioxidant activity of polysaccharides extracted from Armillariellamellea[D]. Changchun: Changchun Normal University, 2020.
    [20]
    魏苏宁, 苏雪莹, 徐国恒. 肝细胞甘油三酯代谢途径异常与脂肪肝[J]. 中国生物化学与分子生物学报,2016,32(2):123−132. [WEI S N, SU X Y, XU G H. Anomaly of triglyceride metabolism in liver lead to NAFLD[J]. Chinese Journal of Biochemistry and Molecular Biology,2016,32(2):123−132.

    WEI S N, SU X Y, XU G H. Anomaly of triglyceride metabolism in liver lead to NAFLD[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(2): 123-132.
    [21]
    李权威, 张开屏, 赵艳红, 等. 乳酸菌调控胆固醇代谢关键因子的研究进展[J]. 中国食品学报,2021,21(1):341−350. [LI Q W, ZHANG K P, ZHAO Y H, et al. Research progress of requlatory key factors involved in cholesterol metabolism by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):341−350.

    LI Q W, ZHANG K P, ZHAO Y H, et al. Research progress of requlatory key factors involved in cholesterol metabolism by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 341-350.
    [22]
    唐兰芳, 王锋, 苏小军, 等. 低共熔溶剂提取对黄精多糖性质及抗氧化活性的影响[J]. 食品与发酵工业,2021,47(11):151−157. [TANG L F, WANG F, SU X J, et al. Effects of deep eutectic solvents on the properties and antioxidant activity of polysaccharides from Polygonatum cyrtonema Hua[J]. Food and Fermentation Industries,2021,47(11):151−157.

    TANG L F, WANG F, SU X J, et al. Effects of deep eutectic solvents on the properties and antioxidant activity of polysaccharides from Polygonatum cyrtonema Hua[J]. Food and Fermentation Industries, 2021, 47(11): 151-157.
    [23]
    MISHRA V, TOMAR S, YADAV P, et al. Promising anticancer activity of polysaccharides and other macromolecules derived from oyster mushroom (Pleurotus sp.): An updated review[J]. International Journal of Biological Macromolecules,2021,182(1):1628−1637.
    [24]
    GONG T, LIU S L, WANG H Z, et al. Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves[J]. Food Bioscience,2021,42:101153. doi: 10.1016/j.fbio.2021.101153
    [25]
    GONG Y F, MA Y X, CHEUNG P C K, et al. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis[J]. Food and Chemical Toxicology,2021,152:112157. doi: 10.1016/j.fct.2021.112157
    [26]
    LI S, SHAN N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J]. Food Chemistry,2014,165(15):262−270.
    [27]
    THAMBIRAJ S R, PHILLIPS M, KOYYALAMUDI S R, et al. Yellow lupin (Lupinus luteus L.) polysaccharides: Antioxidant, immunomodulatory and prebiotic activities and their structural characterisation[J]. Food Chemistry,2018,267(30):319−328.
    [28]
    YAN S, PAN C, YANG X, et al. Degradation of Codium cylindricum polysaccharides by H2O2-Vc-ultrasonic and H2O2-Fe2+-ultrasonic treatment: Structural characterization and antioxidant activity[J]. International Journal of Biological Macromolecules,2021,182:129−135. doi: 10.1016/j.ijbiomac.2021.03.193
    [29]
    曾琳娜. 香菇多糖降脂作用的评估及分子机制的研究[D]. 长沙: 中南林业科技大学, 2016

    ZENG L N. Study the lipid-lowering effect of lentinan and its molecular mechanism[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [30]
    CHEN L, ZHANG Y P, SHA O, et al. Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice[J]. International Journal of Biological Macromolecules,2016,93:1206−1209. doi: 10.1016/j.ijbiomac.2016.09.094
    [31]
    于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. [YU M H, ZHAO X, YIN H L, et al. In vitro and in vivo hypolipidemic effect of Auricularia auricular polysaccharides[J]. Food Science,2017,38(1):232−237. doi: 10.7506/spkx1002-6630-201701039

    YU M H, ZHAO X, YIN H L, et al. In vitro and in Vivo hypolipidemic effect of Auricularia auricular polysaccharides[J]. Food Science, 2017, 38(1): 232-237. doi: 10.7506/spkx1002-6630-201701039
    [32]
    董博斐, 彭文欣, 杨凤霞, 等. 红平菇胞外多糖体外抗氧化及对高血脂小鼠体内抗氧化能力探究[J]. 食品工业科技,2021,42(5):305−310. [DONG B F, PENG W X, YANG F X, et al. Study on the antioxidant capacity of extracellular polysaccharides of Pleurotus djamor in vitro and in hyperlipidemia mice[J]. Science and Technology of Food Industry,2021,42(5):305−310.

    DONG B F, PENG W X, YANG F X, et al. Study on the antioxidant capacity of extracellular polysaccharides of Pleurotus djamor in vitro and in hyperlipidemia mice[J]. Science and Technology of Food Industry, 2021, 42(5): 305-310.
    [33]
    XU N, REN Z Z, ZHANG J J, et al. Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis[J]. International Journal of Biological Macromolecules,2017,95:204−214. doi: 10.1016/j.ijbiomac.2016.11.060
    [34]
    赵媚, 常凌, 宋泽和, 等. 植物多酚与肠道微生物群的相互作用及其对代谢性疾病影响的研究进展[J]. 食品科学,2021,42(5):305−313. [ZHAO M, CHANG L, SONG Z H, et al. Interactions between plant polyphenols and intestinal microbiota and their effects on metabolic diseases[J]. Food Science,2021,42(5):305−313. doi: 10.7506/spkx1002-6630-20200228-326

    ZHAO M, CHANG L, SONG Z H, et al. Interactions between plant polyphenols and intestinal microbiota and their effects on metabolic diseases[J]. Food Science, 2021, 42(5): 305-313. doi: 10.7506/spkx1002-6630-20200228-326
    [35]
    SONG Q Q, WANG Y K, HUANG L X, et al. Review of the relationships among polysaccharides, gut microbiota, and human health[J]. Food Research International,2020,140:109858. doi: 10.1016/j.foodres.2020.109858
    [36]
    PAN Y L, WU B B, YAN X Q, et al. Research on intestinal flora of obese patients by intervention of plant fermentation extraction[J]. Clinical Gastroenterology & Hepatology,2017,15(1):156−157.
    [37]
    GHOLIZADEH P, MAHALLEI M, PORMOHAMMAD A, et al. Microbial balance in the intestinal normal microbiome and its association with diabetes, obesity and allergic disease[J]. Microbial Pathogenesis,2019,127:48−55. doi: 10.1016/j.micpath.2018.11.031
    [38]
    张翠兰, 李杨, 苏佩琼, 等. 肥胖2型糖尿病患者代谢性手术治疗后肠道菌群的变化[J]. 中国病原生物学杂志,2021,16(3):348−351, 358. [ZHANG C L, LI Y, SU P Q, et al. Changes in intestinal flora in obese patients with type 2 diabetes after metabolic surgery[J]. Journal of Pathogen Biology,2021,16(3):348−351, 358.

    ZHANG C L, LI Y, SU P Q, et al. Changes in intestinal flora in obese patients with type 2 diabetes after metabolic surgery [J]. Journal of Pathogen Biology, 2021, 16(3): 348-351+358.
    [39]
    HE J, CHEN J, HE Q, et al. Oral L-theanine administration promotes fat browning and prevents obesity in mice fed high-fat diet associated with the modulation of gut microbiota[J]. Journal of Functional Foods,2021,81:104476. doi: 10.1016/j.jff.2021.104476
    [40]
    傅灵艳. 肥胖大鼠肝脏生物节律与肠道菌群关系研究[D]. 南昌: 江西中医药大学, 2019

    FU L Y. Relationship between liver biological rhythm and intestinal flora in obese rats[D]. Nanchang: Jiangxi University of Chinese Medicine, 2019.
    [41]
    RIVA A, BORGO F, LASSANDRO C, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations[J]. Digestive & Liver Disease,2016,48:e268.
    [42]
    MILLION M, MARANINCHI M, HENRY M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii[J]. International Journal of Obesity,2012,36(6):817−825. doi: 10.1038/ijo.2011.153
    [43]
    REQUENA T, SONG Y, PELAEZ C, et al. Modulation and metabolism of obesity-associated microbiota in a dynamic simulator of the human gut microbiota[J]. LWT- Food Science and Technology,2021,141:110921. doi: 10.1016/j.lwt.2021.110921
    [44]
    MULLINS T P, TOMSETT K I, GALLO L A, et al. Maternal gut microbiota displays minor changes in overweight and obese women with GDM[J]. Nutrition Metabolism and Cardiovascular Diseases,2021,31(7):2131−2139. doi: 10.1016/j.numecd.2021.03.029
    [45]
    BALAMURUGAN R, GEORGE G, KABEERDOSS J, et al. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children[J]. British Journal of Nutrition,2010,103(3):335−338. doi: 10.1017/S0007114509992182
    [46]
    GUO Z T, WANG H X, KONG L Q, et al. Supplementation with nanobubble water alleviates obesity-associated markers through modulation of gut microbiota in high-fat diet fed mice[J]. Journal of Functional Foods,2020,67:103820. doi: 10.1016/j.jff.2020.103820
    [47]
    JUNIOR R E M, CARVALHO L M D, REIS D C D, et al. Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice[J]. The Journal of Nutritional Biochemistry,2021,92:108622. doi: 10.1016/j.jnutbio.2021.108622
    [48]
    BORDOLOI J, OZAH D, BORA T, et al. Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPARα signaling cascade of lipid metabolism[J]. The Journal of Nutritional Biochemistry,2019,70:174−184. doi: 10.1016/j.jnutbio.2019.05.006
    [49]
    王华文. 健脾祛痰法通过调节肠道菌群和胆汁酸代谢改善血脂异常的作用及机制研究[D]. 沈阳: 辽宁中医药大学, 2020

    WANG H W. Study on the effect and mechanism of invigorating spleen and removing phlegm to improve dyslipidemia by regulating intestinal flora and bile acid metabolism [D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2020.
    [50]
    熊静芳, 傅国胜. 高脂血症患者肠道优势菌群与血清脂质水平相关性研究[J]. 中国微生态学杂志,2013,25(11):1282−1285,1289. [XIONG J F, FU G S. Correlations between gut predominant bacteria and serum lipids in patients with hyperlipidemia[J]. Chinese Journal of Microecology,2013,25(11):1282−1285,1289.

    XIONG J F, FU G S. Correlations between gut predominant bacteria and serum lipids in patients with hyperlipidemia[J]. Chinese Journal of Microecology, 2013, 25(11): 1282-1285+1289.
    [51]
    GAO J, DING G Q, LI Q, et al. Tibet kefir milk decreases fat deposition by regulating the gut microbiota and gene expression of Lpl and Angptl4 in high fat diet-fed rats[J]. Food Research International,2019,121:278−287. doi: 10.1016/j.foodres.2019.03.029
    [52]
    BERNINI L J, SIMAO A N C, ALFIERI D F, et al. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome[J]. Nutrition,2016,32(6):716−719. doi: 10.1016/j.nut.2015.11.001
    [53]
    ALESSANDRI G, SINDEREN D V, VENTURA M. The genus Bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota[J]. Computational and Structural Biotechnology Journal,2021,19:1472−1487. doi: 10.1016/j.csbj.2021.03.006
    [54]
    ZHANG T T, ZHAO W Y, XIE B Z, et al. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota[J]. Journal of Functional Foods,2020,72:104038. doi: 10.1016/j.jff.2020.104038
    [55]
    KHAN I, HUANG G X, LI X, et al. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions[J]. Journal of Functional Foods,2018,41:191−201. doi: 10.1016/j.jff.2017.12.046
    [56]
    孙婷, 张之. 尿石素A对2型糖尿病小鼠肠道菌群的影响[J]. 新疆医学,2021,51(6):634−637,650. [SUN T, ZHANG Z. Effects of urolithin A on intestinal microflora in type-2-diabetic mice[J]. Xinjiang Medical Journal,2021,51(6):634−637,650.

    SUN T, ZHANG Z. Effects of urolithin A on intestinal microflora in type-2-diabetic mice[J]. Xinjiang Medical Journal, 2021, 51(6): 634-637+650.
    [57]
    乔高翔. 菝葜多糖对DSS诱导的小鼠溃疡性结肠炎与肠道菌群相关性的探究[D]. 南昌: 江西农业大学, 2020

    QIAO G X. Study on effects of Smilax china L. polysaccharide in DSS-induced ulcerativecolitis and intestinal flora in mice [D]. Nanchang: Jiangxi Agricultural University, 2020.
    [58]
    练新荣, 承耀中, 董彦鹏, 等. 老龄小鼠术后认知功能障碍和肠道菌群失调的关系[J]. 现代生物医学进展, 2021, 21(10): 1801−1805

    LIAN X R, CHENG Y Z, DONG Y P, et al. Relationship between postoperative cognitive dysfunction and intestinal dysbacteriosis in aged mice, Progress in Modern Biomedicine, 2021, 21(10): 1801−1805.
    [59]
    GUO W L, DENG J C, PAN Y Y, et al. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin[J]. International Journal of Biological Macromolecules,2020,153:1231−1240. doi: 10.1016/j.ijbiomac.2019.10.253
    [60]
    REN F, MENG C, CHEN W J, et al. Ganoderma amboinense polysaccharide prevents obesity by regulating gut microbiota in high-fat-diet mice[J]. Food Bioscience,2021,42:101107. doi: 10.1016/j.fbio.2021.101107
    [61]
    CHEN Y F, JIN L, LI Y H, et al. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice[J]. Journal of Functional Foods,2018,49:20−31. doi: 10.1016/j.jff.2018.08.015
    [62]
    崔成. 抗生素、益生菌及银耳孢子发酵物对猪肠道硬壁门菌和拟杆门菌、脂肪沉积和脂肪代谢相关基因表达的影响及其作用机理[D]. 成都: 四川农业大学, 2013

    CUI C. Effect and mechanism of antibiotics, probiotics and Tremella fuciformis ferment substance on pig intestinal Firmicutes and Bacteroidetes, fat deposition and fat metabolism-related gene expression[D]. Chengdu: Sichuan Agricultural University, 2013.
    [63]
    FANG D L, WANG D, MA G X, et al. Auricularia polytricha noodles prevent hyperlipemia and modulate gut microbiota in high-fat diet fed mice[J]. Food Science and Human Wellness,2021,10:431−441. doi: 10.1016/j.fshw.2021.04.005
    [64]
    刘肖肖. 金针菇子实体多糖FVP60调节肠道菌群发挥降血脂功能研究[D]. 上海: 上海海洋大学, 2020

    LIU X X. Polysaccharides FVP60 from Flammulina velutipes ameliorate hyperlipidemia via modulating gut microbiota[D]. Shanghai: Shanghai Ocean University, 2020.
    [65]
    LI L, GUO W L, ZHANG W, et al. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats[J]. Food & Function,2019,10(5):2560−2572.
    [66]
    SANG T T, GUO C J, GUO D D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydrate Polymers,2021,256:117594. doi: 10.1016/j.carbpol.2020.117594
    [67]
    XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism[J]. Trends in Food Science & Technology,2020,100:118−130.
    [68]
    KAUNA C J, GTAREK P, CHARTRAND M S, et al. Is there a relationship between intestinal microbiota, dietary compounds, and obesity?[J]. Trends in Food Science & Technology,2017,70:105−113.
    [69]
    MEENU M, XU B J. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch[J]. Critical Reviews in Food Science and Nutrition,2019,59(18):3019−3031. doi: 10.1080/10408398.2018.1481360
    [70]
    GIUBERTI G, GALLO A, MOSCHINI M, et al. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum[J]. Animal,2013,7(9):1446−1453. doi: 10.1017/S1751731113001092
    [71]
    连晓蔚. 肠道菌群利用几种膳食纤维体外发酵产短链脂肪酸的研究[D]. 广州: 暨南大学, 2011

    LIAN X W. Gut microbiota in vitro fermenting destarched dietary fiber to produce SCFA[D]. Guangzhou: Jinan University, 2011.
    [72]
    YANG F, FENG B, NIU Y J, et al. Fu instant tea ameliorates fatty liver by improving microbiota dysbiosis and elevating short-chain fatty acids in the intestine of mice fed a high-fat diet[J]. Food Bioscience,2021,42:101207. doi: 10.1016/j.fbio.2021.101207
    [73]
    PARK H, KAUSHIK V K, CONSTANT S, et al. Coordinate regulation of Malonyl-CoA Decarboxylase, sn-Glycerol-3-phosphate Acyltransferase, and Acetyl-CoA Carboxylase by AMP-activated protein kinase in rat tissues in response to exercise[J]. Journal of Biological Chemistry,2002,277(36):32571−32577. doi: 10.1074/jbc.M201692200
    [74]
    PAN Y Y, WAN X Z, ZENG F, et al. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats[J]. International Journal of Biological Macromolecules,2020,155:1030−1039. doi: 10.1016/j.ijbiomac.2019.11.067
    [75]
    SHIMIZU T, MORI K, KOBAYASHI H, et al. Japanese mushroom consumption alters the lipid metabolomic profile of high-fat diet-fed mice[J]. Heliyon,2020,6(7):e04438. doi: 10.1016/j.heliyon.2020.e04438
    [76]
    缪福俊, 单春兰, 耿树香, 等. 核桃油对脂多糖诱导小鼠小肠炎性因子TNF-α的影响[J]中国粮油学报, 2021, 36(5): 76-81

    MIAO F J, SHAN C L, GENG S X, et al. Effect of walnut oil on intestine inflammatory factor TNF-a induced by lipopolysaccharide in mice[J] Journal of the Chinese Cereals and Oils Association 2021, 36(5): 76-81.
    [77]
    马长路. 干酪乳杆菌对高脂膳食仓鼠肠道菌群及脂质代谢的影响与机理研究[D]. 北京: 中国农业科学院, 2020

    MA C L. Effect and mechanism of Lactobacillus casei on intestinal flora and lipid metabolism of high-fat diet hamsters[D]. Beijing: Chinese Academy of Agricultural Sciences Thesis, 2020.
    [78]
    龚勇珍, 孙少卫, 廖端芳. 细胞炎症反应与脂质代谢的相互作用及调节[J]. 中国动脉硬化杂志,2017,25(6):623−629. [GONG Y Z, SUN S W, LIAO D F. Interaction and regulation of cell inflammation and lipid metabolism[J]. Chinese Journal of Arteriosclerosis,2017,25(6):623−629. doi: 10.3969/j.issn.1007-3949.2017.06.016

    GONG Y Z, SUN S W, LIAO D F. Interaction and regulation of cell inflammation and lipid metabolism[J]. Chinese Journal of Arteriosclerosis, 2017, 25(6): 623-629. doi: 10.3969/j.issn.1007-3949.2017.06.016
    [79]
    YANG Y, YE H Q, ZHAO C H, et al. Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota[J]. Carbohydrate Polymers,2021,262:117668. doi: 10.1016/j.carbpol.2021.117668
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (355) PDF downloads (28) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return