CAI Yajie, WU Rina, LI Yu, et al. Optimization of Process Conditions for Fermented Mulberry Leaf Tea and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(15): 187−194. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080151.
Citation: CAI Yajie, WU Rina, LI Yu, et al. Optimization of Process Conditions for Fermented Mulberry Leaf Tea and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(15): 187−194. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080151.

Optimization of Process Conditions for Fermented Mulberry Leaf Tea and Analysis of Its Antioxidant Activity

More Information
  • Received Date: August 15, 2023
  • Available Online: June 04, 2024
  • In order to optimize the fermentation process conditions of mulberry leaf tea and explore the changes in antioxidant activity of mulberry leaf tea after fermentation. This experiment used response surface analysis to determine the optimal process conditions for fermenting mulberry leaf tea under three variable conditions: Fermentation temperature, fermentation time, and inoculation amount of Aspergillus niger. The content of bioactive substances and antioxidant properties in fermented mulberry leaf tea were determinated. The findings indicated that 5 days and 16 hours of fermentation duration, 30 ℃ of fermentation temperature, and 16.55% of inoculation amount were the ideal process parameters, and that the fermented mulberry leaf tea scored as high as 90 on the sensory scale under these conditions. In addition, the content of total flavonoids, total polysaccharides, polyphenols, free amino acids, rutin, and quercetin in fermented mulberry leaf tea increased by 14.39%, 12.67%, 2.90%, 3.46%, 81.13%, and 19.35%, respectively, compared to mulberry leaf green tea. Tea brown pigment with a content of 7.55%±0.37% was also detected in fermented mulberry leaf tea. In addition, the scavenging rate of hydroxyl radicals, DPPH radicals, superoxide radicals and the chelating rate of divalent iron ions of fermented mulberry leaf tea at the concentration of 1/1000 (g/mL) were 1.16, 1.07, 1.06 and 0.82 times higher than that of mulberry leaf green tea, respectively. The results of this study provide theoretical basis and references for further development and application of mulberry leaf in the future.
  • [1]
    郑升海, 黄丹, 罗惠波, 等. 冠突散囊菌发酵桑叶茶品质研究[J]. 食品科技,2021,46(3):44−48. [ZHENG S H, HUANG D, LUO H B, et al. Study on the quality of mulberry leaf tea fermented by Clo stridium coronarum[J]. Food Technology,2021,46(3):44−48.]

    ZHENG S H, HUANG D, LUO H B, et al. Study on the quality of mulberry leaf tea fermented by Clostridium coronarum[J]. Food Technology, 2021, 46(3): 44−48.
    [2]
    YAO J M, LIU H F, MA C Y, et al. A review on the extraction, bioactivity, and application of tea polysaccharides[J]. Molecules,2022,27(15):12−17.
    [3]
    冯拓, 单培, 张展开, 等. 16种市售茶叶抗氧化活性及抗氧化物质分析[J]. 中国食品学报,2022,22(10):352−362. [FENG T, SHAN P, ZHANG Z K, et al. Analysis of antioxidant activity and antioxidant substances of 16 commercially available tea leaves[J]. Chinese Journal of Food,2022,22(10):352−362.]

    FENG T, SHAN P, ZHANG Z K, et al. Analysis of antioxidant activity and antioxidant substances of 16 commercially available tea leaves[J]. Chinese Journal of Food, 2022, 22(10): 352−362.
    [4]
    陈永丽, 高畅, 洛桑卓玛, 等. 米曲霉发酵桑叶茶的工艺优化[J]. 食品科技,2020,45(1):114−121. [CHEN Y L, GAO C, LUO S Z M, et al. Optimization of fermentation process for mulberry leaf tea by Aspergillus oryzae[J]. Food Technology,2020,45(1):114−121.]

    CHEN Y L, GAO C, LUO S Z M, et al. Optimization of fermentation process for mulberry leaf tea by Aspergillus oryzae[J]. Food Technology, 2020, 45(1): 114−121.
    [5]
    MAS S S. Examination of significance of measurement of free amino acid in the blood in pregnancy and diabetes[J]. Abstracts of Papers of the American Chemical Society,2011,241(1):13−19.
    [6]
    KHO K, SIM Y Y, NYAM K L. Antioxidant activities of tea prepared from kenaf (Hibiscus cannabinus L. KR9) leaves at different maturity stages[J]. Journal of Food Measurement and Characterization,2019,13(3):2009−2016. doi: 10.1007/s11694-019-00121-8
    [7]
    贾冬英, 高畅, 金野, 等. 一种发酵桑叶茶及其制备方法[P]. 四川:CN107897455B, 2021-01-05. [JIA D Y, GAO C, JIN Y, et al. A fermented mulberry leaf tea and its preparation method[P]. Sichuan:CN107897455B, 2021-01-05.]

    JIA D Y, GAO C, JIN Y, et al. A fermented mulberry leaf tea and its preparation method[P]. Sichuan: CN107897455B, 2021-01-05.
    [8]
    卢丽, 周承哲, 徐凯, 等. 基于感官评价和代谢组学的叶用枸杞茶分析[J]. 食品科学,2023,20(5):1−17. [LU L, ZHOU C Z, XU K, et al. Analysis of leaf use goji berry tea based on sensory evaluation and metabolomics[J]. Food Science,2023,20(5):1−17.] doi: 10.7506/spkx1002-6630-20221009-065

    LU L, ZHOU C Z, XU K, et al. Analysis of leaf use goji berry tea based on sensory evaluation and metabolomics[J]. Food Science, 2023, 20(5): 1−17. doi: 10.7506/spkx1002-6630-20221009-065
    [9]
    中国国家标准化管理委员会. GB/T 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京:中国标准出版社, 2018. [Standardization Administration of China. GB/T 8313-2018. Detection method for tea polyphenols and catechins in tea[S]. Beijing:China Standard Publishing House, 2018.]

    Standardization Administration of China. GB/T 8313-2018. Detection method for tea polyphenols and catechins in tea[S]. Beijing: China Standard Publishing House, 2018.
    [10]
    中国国家标准化管理委员会. GB/T 40632-2021 竹叶中多糖的检测方法[S]. 北京:中国标准出版社, 2021. [Standardization Administration of China. GB/T 40632-2021. Detection methods for polysaccharides in bamboo leaves[S]. Beijing:China Standard Publishing House, 2021.]

    Standardization Administration of China. GB/T 40632-2021. Detection methods for polysaccharides in bamboo leaves[S]. Beijing: China Standard Publishing House, 2021.
    [11]
    胡海洋, 陈红艳. 电化学法对苦荞茶中芦丁含量的测定[J]. 食品科学,2015,36(8):115−119. [HU H Y, CHEN H Y. Determination of rutin content in tartary buckwheat tea by electrochemical method[J]. Food Science,2015,36(8):115−119.] doi: 10.7506/spkx1002-6630-201508020

    HU H Y, CHEN H Y. Determination of rutin content in tartary buckwheat tea by electrochemical method[J]. Food Science, 2015, 36(8): 115−119. doi: 10.7506/spkx1002-6630-201508020
    [12]
    胡圆圆, 杨云忠, 王萍, 等. 普洱茶及茶粉中茶褐素含量测定的研究[J]. 食品安全导刊,2021,25(30):46−58. [HU Y Y, YANG Y Z, WANG P, et al. Study on the determination of tea brown content in Pu'er tea and tea powder[J]. Introduction to Food Safety,2021,25(30):46−58.] doi: 10.3969/j.issn.1674-0270.2021.30.spaqdk202130037

    HU Y Y, YANG Y Z, WANG P, et al. Study on the determination of tea brown content in Pu'er tea and tea powder[J]. Introduction to Food Safety, 2021, 25(30): 46−58. doi: 10.3969/j.issn.1674-0270.2021.30.spaqdk202130037
    [13]
    全国生化检测标准化技术委员会. GB/T 30987-2020 植物中游离氨基酸的测定[S]. 北京:中国标准出版社, 2020. [National Technical Committee for Standardization of Biochemical Testing. GB/T 30987-2020. Determination of free amino acids in plants[S]. Beijing:China Standard Publishing House, 2020.]

    National Technical Committee for Standardization of Biochemical Testing. GB/T 30987-2020. Determination of free amino acids in plants[S]. Beijing: China Standard Publishing House, 2020.
    [14]
    全国林化产品标准化技术委员会. GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测高效液相色谱法[S]. 北京:中国标准出版社, 2021. [National Technical Committee for Standardization of Forestry Products. GB/T 40642-2021. High performance liquid chromatography for the detection of 1-deoxynojirimycin in mulberry leaf extract[S]. Beijing:China Standard Publishing House, 2021.]

    National Technical Committee for Standardization of Forestry Products. GB/T 40642-2021. High performance liquid chromatography for the detection of 1-deoxynojirimycin in mulberry leaf extract[S]. Beijing: China Standard Publishing House, 2021.
    [15]
    中国国家标准化管理委员会. GB/T 8305-2013 茶水浸出物测定[S]. 北京:中国标准出版社, 2013. [China National Standardization Administration. GB/T 8305-2013. Determination of tea water extracts[S]. Beijing:China Standard Publishing House, 2013.]

    China National Standardization Administration. GB/T 8305-2013. Determination of tea water extracts[S]. Beijing: China Standard Publishing House, 2013.
    [16]
    DONDURMACIOGLU F, AVAN A N, APAK R. Simultaneous detection of superoxide anion radicals and determination of the superoxide scavenging activity of antioxidants using a N,N-dimethyl-p-phenylene diamine/Nafion colorimetric sensor[J]. Analytical Methods,2017,9(43):6202−6212. doi: 10.1039/C7AY02132A
    [17]
    东方, 揭国良, 何普明. 不同发酵程度茶叶的体内与体外抗氧化功能比较[J]. 中国茶叶加工,2015(4):40−45. [DONG F, JIE G L, HE P M. Comparison of in vivo and in vitro antioxidant functions of tea leaves with different degrees of fermentation[J]. China Tea Processing,2015(4):40−45.]

    DONG F, JIE G L, HE P M. Comparison of in vivo and in vitro antioxidant functions of tea leaves with different degrees of fermentation[J]. China Tea Processing, 2015(4): 40−45.
    [18]
    玄红专, 桑青, 麻建军. 邻苯三酚自氧化法测定不同蜂产品抗氧化活性的研究[J]. 食品科技,2008(4):137−139. [XUAN H Z, SANG Q, MA J J. Study on the determination of antioxidant activity of different bee products using pyrogallol autooxidation method[J]. Food Technology,2008(4):137−139.] doi: 10.3969/j.issn.1005-9989.2008.04.039

    XUAN H Z, SANG Q, MA J J. Study on the determination of antioxidant activity of different bee products using pyrogallol autooxidation method[J]. Food Technology, 2008(4): 137−139. doi: 10.3969/j.issn.1005-9989.2008.04.039
    [19]
    王昌禄, 任璐, 陈志强, 等. 香椿老叶总多酚抗氧化活性的研究[J]. 林产化学与工业,2008,10(5):89−92. [WANG C L, REN L, CHEN Z Q, et al. Study on the antioxidant activity of total polyphenols from the old leaves of Toona sinensis[J]. Forestry Chemistry and Industry,2008,10(5):89−92.] doi: 10.3321/j.issn:0253-2417.2008.05.018

    WANG C L, REN L, CHEN Z Q, et al. Study on the antioxidant activity of total polyphenols from the old leaves of Toona sinensis[J]. Forestry Chemistry and Industry, 2008, 10(5): 89−92. doi: 10.3321/j.issn:0253-2417.2008.05.018
    [20]
    何建新, 胡艳玲, 何汶珊, 等. 响应面-主成分分析法优化大曲发酵桑叶茶工艺[J]. 食品工业科技,2021,42(17):113−119. [HE J X, HU Y L, HE W S, et al. Optimization of Daqu fermentation technology for mulberry leaf tea by response surface methodology principal component analysis[J]. Science and Technology of Food Industry,2021,42(17):113−119.]

    HE J X, HU Y L, HE W S, et al. Optimization of Daqu fermentation technology for mulberry leaf tea by response surface methodology principal component analysis[J]. Science and Technology of Food Industry, 2021, 42(17): 113−119.
    [21]
    BAI H, YAN R, WANG F, et al. Comparing the effects of three processing methods on the efficacy of mulberry leaf tea:Analysis of bioactive compounds, bioavailability and bioactivity[J]. Food Chemistry,2023,405(PB):139−147.
    [22]
    梅玉立. 桑叶发酵条件优化及混合活性成分对小鼠脂代谢异常的影响[D]. 重庆:西南大学, 2022. [MEI Y L. Optimization of mulberry leaf fermentation conditions and the effect of mixed active ingredients on abnormal lipid metabolism in mice[D]. Chongqing:Southwest University, 2022.]

    MEI Y L. Optimization of mulberry leaf fermentation conditions and the effect of mixed active ingredients on abnormal lipid metabolism in mice[D]. Chongqing: Southwest University, 2022.
    [23]
    黄磊磊, 刘佳怡, 王天怡, 等. 纤维素酶辅助超声提取丁香叶黄酮工艺优化及抗氧化性分析[J]. 食品工业科技,2023,16(8):1−19. [HUANG L L, LIU J Y, WANG T Y, et al. Optimization of cellulase assisted ultrasound extraction process and analysis of antioxidant activity of flavonoids from clove leaves[J]. Science and Technology of Food Industry,2023,16(8):1−19.]

    HUANG L L, LIU J Y, WANG T Y, et al. Optimization of cellulase assisted ultrasound extraction process and analysis of antioxidant activity of flavonoids from clove leaves[J]. Science and Technology of Food Industry, 2023, 16(8): 1−19.
    [24]
    GANZON J G, CHEN L G, WANG C C. 4-O-Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds[J]. Journal of Food and Drug Analysis,2018,26(3):985−993. doi: 10.1016/j.jfda.2017.11.011
    [25]
    WANYO P, SIRIAMORNPUN S, MEESO N. Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process[J]. Food Bioprod Process,2011,89(C1):22−30.
    [26]
    雷诗涵, 屈廷啟, 胡艳玲, 等. 盐渍-醋蒸-发酵法制备功能性桑叶茶及其性质研究[J]. 食品工业科技,2020,41(11):177−180. [LEI S H, QU T Q, HU Y L, et al. Preparation and properties of functional mulberry leaf tea by salting vinegar steaming fermentation method[J]. Science and Technology of Food Industry,2020,41(11):177−180.]

    LEI S H, QU T Q, HU Y L, et al. Preparation and properties of functional mulberry leaf tea by salting vinegar steaming fermentation method[J]. Science and Technology of Food Industry, 2020, 41(11): 177−180.
    [27]
    JEON Y H, CHOI S. Evaluation of phytochemical constituents and organoleptic properties of mulberry leaf tea obtained by different processing methods[J]. Korean Journal of Food Preservation,2019,26(1):59−67. doi: 10.11002/kjfp.2019.26.1.59
    [28]
    UNBAN K, KHATTHONGNGAM N, SHETTY K, et al. Nutritional biotransformation in traditional fermented tea (Miang) from north Thailand and its impact on antioxidant and antimicrobial activities[J]. Journal of Food Science and Technology-Mysore,2019,56(5):2687−2699. doi: 10.1007/s13197-019-03758-x
    [29]
    HE Q, YANG K L, WU X Y, et al. Phenolic compounds, antioxidant activity and sensory evaluation of sea buckthorn (Hippophae rhamnoides L.) leaf tea[J]. Food Science& Nutrition,2023,11(3):1212−1222.
    [30]
    CHAN E W C, LYE P Y, TAN L N, et al. Effects of drying method and particle size on the antioxidant properties of leaves and teas of Morusalba, Lagerstroemia speciosa and Thunbergia laurifolia[J]. Chemical Industry& Chemical Engineering Quarterly,2012,18(3):465−472.
    [31]
    YASUMOTO K, HOSHIKO H, SEKIGUCHI N, et al. Safety evaluation of a beverage containing mulberry leaf extract[J]. Bioscience Biotechnology and Biochemistry,2022,86(4):519−527. doi: 10.1093/bbb/zbac011
  • Related Articles

    [1]LI Jinting, QIAN Xinyi, YONG Yidan, WU Mengmeng, SUN Huakai, WANG Yanan, CHEN Anhui, SHAO Ying, NI Zaizhong. Optimization of Enzymatic-assisted Aqueous Two-phase Extraction Conditions of Polysaccharides from Cordyceps cicadae and Analysis of Its Antioxidant, Hypoglycemic and Hypolipidemic Properties in Vitro[J]. Science and Technology of Food Industry, 2024, 45(12): 179-188. DOI: 10.13386/j.issn1002-0306.2023070233
    [2]ZHANG Huihui, LI Can, LIU Huiping, MA Xiaoxiao, ZHANG Xin, WANG Bing, LIU Ying. Extraction and Purification of Cinnamomum cassia Polysaccharides and Its Antioxidant and Hypoglycemic Activities in Vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 15-24. DOI: 10.13386/j.issn1002-0306.2023080088
    [3]WANG Anna, PENG Xiaowei, KAN Huan, WANG Dawei, HU Xiang, LIU Yun. Extraction of Flavonoids from Docynia delavayi and Their Antioxidant and Hypoglycemic Activities[J]. Science and Technology of Food Industry, 2023, 44(2): 232-240. DOI: 10.13386/j.issn1002-0306.2022040128
    [4]NA Zhiguo, YU Shuang, HE Shuzhen, CHU Zhong. Auxiliary Hypoglycemic Effect of Low-GI Multigrain Cocoa Powder[J]. Science and Technology of Food Industry, 2023, 44(1): 28-37. DOI: 10.13386/j.issn1002-0306.2022070134
    [5]WANG Qiudan, ZHAO Kaidi, LIN Changqing. Study on Antioxidant Properties of Pueraria lobata Polysaccharides and Its Hypoglycemic Effect[J]. Science and Technology of Food Industry, 2022, 43(5): 381-388. DOI: 10.13386/j.issn1002-0306.2021070357
    [6]LI Xia, ZHANG Guozhu, LIU Zhifei, SHAN Yang, LI Peijun, LI Jing. Hypoglycemic Activity of Enteromorpha intestinalis Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(15): 321-326. DOI: 10.13386/j.issn1002-0306.2020090021
    [7]ZHONG Li-xia, JIANG Zhen-yu, WANG Jia-ni, LI Xu-feng, XU Li-shan. Optimization of Extraction Technology of Hawthorn Polysaccharides and Its Hypoglycemic and Hypolipidemic Activity[J]. Science and Technology of Food Industry, 2019, 40(13): 119-124,147. DOI: 10.13386/j.issn1002-0306.2019.13.020
    [8]ZHANG Hui-juan, HUANG Lian-yan, YIN Meng, WANG Jing. Research on hypoglycemic function of oat peptides[J]. Science and Technology of Food Industry, 2017, (10): 360-363. DOI: 10.13386/j.issn1002-0306.2017.10.061
    [9]YE Min, WEN Zhu, PENG Yuan-fang, ZHANG Da-gui. Effects of Dictyophora rubrovalvata polysaccharide on anti- aging and hypoglycemic in mice[J]. Science and Technology of Food Industry, 2016, (07): 343-345. DOI: 10.13386/j.issn1002-0306.2016.07.057
    [10]LI Chang-qin, LU Yin, LI Xin-zheng, KANG Wen-yi. Hypoglycemic effect of two cultivates varieties of Cucurbita moschata Duch.[J]. Science and Technology of Food Industry, 2013, (19): 328-331. DOI: 10.13386/j.issn1002-0306.2013.19.002
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 郭玉龙,邵高耸,史轻舟,许焯,胡定煜,符式瑜. 纳米材料在食品检验鉴定中的应用研究进展. 山东化工. 2024(01): 91-94 .
    2. 左海根,黄芷诺,李毛英,袁小珍,杜永琴,刘小玉,陈雨. 核酸适配体在雌二醇分析中的研究进展. 理化检验-化学分册. 2023(07): 862-868 .
    3. 唐春花,杨洁,卢晓玲,陈美仑,魏铮,余鹏,赵佳. 甾体激素核酸适配体的筛选与应用. 生物化学与生物物理进展. 2023(09): 2146-2161 .
    4. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 .
    5. 常嵘,叶巧燕,刘慧敏,郝欣雨,郭洪侠,郑楠. 牛奶中激素检测方法的研究进展. 食品安全质量检测学报. 2022(16): 5235-5243 .
    6. 史学丽,高辉,周永红,赵伟. 一种基于适配体传感器的17β-雌二醇定量分析方法. 河北工业科技. 2021(05): 431-437 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (124) PDF downloads (30) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return