ZHANG Huihui, LI Can, LIU Huiping, et al. Extraction and Purification of Cinnamomum cassia Polysaccharides and Its Antioxidant and Hypoglycemic Activities in Vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 15−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080088.
Citation: ZHANG Huihui, LI Can, LIU Huiping, et al. Extraction and Purification of Cinnamomum cassia Polysaccharides and Its Antioxidant and Hypoglycemic Activities in Vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 15−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080088.

Extraction and Purification of Cinnamomum cassia Polysaccharides and Its Antioxidant and Hypoglycemic Activities in Vitro

More Information
  • Received Date: August 10, 2023
  • Available Online: January 30, 2024
  • In this paper, Cinnamomum cassia polysaccharide (CCP) was extracted and purified, and its physicochemical properties, antioxidant and hypoglycemic activities were investigated. The polysaccharide yield was optimized by the response surface test with three conditions: Temperature, time and liquid-solid ratio. Then the physicochemical properties of purified CCP were investigated by high performance liquid chromatography, thermogravimetric analysis and other methods, meanwhile, its antioxidant and hypoglycemic activities were tested in vitro. Results indicated that the optimum extraction conditions as follow: Extraction temperature 90 ℃, extraction time 2.5 h, liquid-solid ratio 20:1 (mL/g), extraction twice, under these conditions, the average yield was 3.22%. The relative molecular weight of CCP was 1.95×106 Da, the total sugar content was 90.11%±1.24%, and it was stable within 230 ℃. Both Fourier-transform infrared and nuclear magnetic hydrogen spectra showed that CCP had α, β-glycosidic bonds and other structures, in addition, Congo red staining showed that it might not have triple helix structure. Activity assays showed that CCP had good scavenging effect on DPPH·, ABTS+∙, ·OH, with IC50 values of 0.191, 2.835 and 3.221 mg/mL, respectively, and the total reducing power value of the polysaccharide at 6 mg/mL was 1.18. In addition, CCP also had inhibitory activity against α-amylase and α-glucosidase, with IC50 values of 0.189 and 0.340 mg/mL. In this study, a high molecular weight Cinnamomum cassia polysaccharide was extracted and purified, which had good antioxidant and hypoglycemic activities, which may provide a basis for the functional development and utilization of Cinnamomum cassia.
  • [1]
    JIANG S F, LIU Y Y, CUI S, et al. The complete chloroplast genome analysis of Cinnamomum cassia Presl[J]. Bangladesh Journal of Botany,2022,51(1):51−55. doi: 10.3329/bjb.v51i1.58820
    [2]
    ZHANG C L, FAN L H, FAN S M, et al. Cinnamomum cassia Presl:A review of its traditional uses, phytochemistry, pharmacology and toxicology[J]. Molecules,2019,24(19):3473. doi: 10.3390/molecules24193473
    [3]
    ALAM A, ANSARI M J, ALQARNI M H, et al. Antioxidant, antibacterial, and anticancer activity of ultrasonic nanoemulsion of Cinnamomum cassia L. essential oil[J]. Plants-Basel,2023,12(4):834. doi: 10.3390/plants12040834
    [4]
    LEE M J, SEO H J, HWANG G S, et al. Molecular mechanism of Cinnamomum cassia against gastric damage and identification of active compounds[J]. Biomolecules,2022,12(4):525. doi: 10.3390/biom12040525
    [5]
    YANG C H, YANG C S, HWANG M L, et al. Antimicrobial activity of various parts of Cinnamomum cassia extracted with different extraction methods[J]. Journal of Food Biochemistry,2012,36(6):690−698. doi: 10.1111/j.1745-4514.2011.00584.x
    [6]
    LEE H S. Anticoagulant properties of the active compound derived from Cinnamomum cassia bark[J]. Food Science and Biotechnology,2007,16(2):218−222.
    [7]
    KOUAME K, PETER A I, AKANG E N, et al. Histological and biochemical effects of Cinnamomum cassia nanoparticles in kidneys of diabetic Sprague-Dawley rats[J]. Bosnian Journal of Basic Medical Sciences,2019,19(2):138−145.
    [8]
    AL-AJALEIN A A S, SHAFIE M H, YAP P G, et al. Microwave-assisted extraction of polysaccharide from Cinnamomum cassia with anti-hyperpigmentation properties:Optimization and characterization studies[J]. International Journal of Biological Macromolecules,2023,226:321−335. doi: 10.1016/j.ijbiomac.2022.12.023
    [9]
    李胜男, 程贤, 毕良武, 等. 肉桂多糖的结构分析及抗氧化活性研究[J]. 林产化学与工业,2022,42(3):34−40. [LI S N, CHENG X, BI L W, et al. Composition analysis and antioxidant activity of cinnamon polysaccharide[J]. Chemistry and Industry of Forest Products,2022,42(3):34−40.] doi: 10.3969/j.issn.0253-2417.2022.03.005

    LI S N, CHENG X, BI L W, et al. Composition analysis and antioxidant activity of cinnamon polysaccharide[J]. Chemistry and Industry of Forest Products, 2022, 423): 3440. doi: 10.3969/j.issn.0253-2417.2022.03.005
    [10]
    张铭儒, 黄嘉欢, 黎雨菲, 等. 肉桂多糖的单糖组成分析及其降血糖作用研究[J]. 中国医院药学杂志,2022,42(15):1533−1538,1582. [ZHANG M R, HUANG J X, LI Y F, et al. Analysis of monosaccharide composition and hypoglycemic effect of polysaccharides from Cinnamomum cassia[J]. Chinese Journal of Hospital Pharmacy,2022,42(15):1533−1538,1582.]

    ZHANG M R, HUANG J X, LI Y F, et al. Analysis of monosaccharide composition and hypoglycemic effect of polysaccharides from Cinnamomum cassia[J]. Chinese Journal of Hospital Pharmacy, 2022, 4215): 15331538,1582.
    [11]
    于峰, 王厚伟, 李兆明, 等. 肉桂多糖对四氧嘧啶致实验性糖尿病小鼠降糖作用的研究[J]. 食品与药品,2009,11(11):1−3. [YU F, WANG H W, LI Z M, et al. Study on anti-hyperglycemic effect of cinnamon polysaccharide on alloxan diabetes mice[J]. Food and Pharmaceuticals,2009,11(11):1−3.]

    YU F, WANG H W, LI Z M, et al. Study on anti-hyperglycemic effect of cinnamon polysaccharide on alloxan diabetes mice[J]. Food and Pharmaceuticals, 2009, 1111): 13.
    [12]
    王泽亮, 张敏, 邱道富, 等. 不同产地肉桂的挥发性成分差异分析[J]. 现代食品科技,2022,38(4):201−207. [WANG Z L, ZHANG M, QIU D F, et al. Difference analysis of volatile components in cinnamon from different producing areas[J]. Modern Food Science & Technology,2022,38(4):201−207.]

    WANG Z L, ZHANG M, QIU D F, et al. Difference analysis of volatile components in cinnamon from different producing areas[J]. Modern Food Science & Technology, 2022, 384): 201207.
    [13]
    景永帅, 孙丽丛, 张瑞娟, 等. 玉竹多糖的体外消化特性及其与乳杆菌和大肠杆菌的相互作用[J], 食品研究与开发, 2023, 44(2):21−28. [JING Y S, SUN L C, ZHANG R J, et al. In vitro digestion characteristic of Polygonatum odoratum polysaccharides and their interaction with Lactobacillus bulgaricus and Escherichia coli[J]. Food Research and Development, 2023, 44(2):21−28.]

    JING Y S, SUN L C, ZHANG R J, et al. In vitro digestion characteristic of Polygonatum odoratum polysaccharides and their interaction with Lactobacillus bulgaricus and Escherichia coli[J]. Food Research and Development, 2023, 44(2): 21−28.
    [14]
    陈岩, 张润阳, 蔡小双, 等. 不同脱色方法对油莎豆多糖抗氧化与降血糖活性研究[J]. 食品安全导刊,2022(23):91−97. [CHEN Y, ZHANG R Y, CAI X S, et al. Study on antioxidant and hypoglycemic activity of polysaccharides from Cyperus esculentus by different decolorization methods[J]. China Food Safety Magazine,2022(23):91−97.]

    CHEN Y, ZHANG R Y, CAI X S, et al. Study on antioxidant and hypoglycemic activity of polysaccharides from Cyperus esculentus by different decolorization methods[J]. China Food Safety Magazine, 202223): 9197.
    [15]
    MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry,2005,339(1):69−72. doi: 10.1016/j.ab.2004.12.001
    [16]
    MA C L, BAI J W, SHAO C T, et al. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products[J]. Food Research International,2021,143:110281. doi: 10.1016/j.foodres.2021.110281
    [17]
    DENG J P, CHEN T S, WANG Y F, et al. Antioxidant, anti-inflammatory and immunostimulatory activity of polysaccharide from Artemisiae argyi Folium[C]// Proceedings of the Conference on Optics in Health Care and Biomedical Optics VIII, Beijing, PEOPLES R CHINA, 2018:11−13.
    [18]
    THAMBIRAJ S R, PHILLIPS M, KOYYALAMUDI S R, et al. Yellow lupin ( Lupinus luteus L.) polysaccharides:Antioxidant, immunomodulatory and prebiotic activities and their structural characterisation[J]. Food Chemistry,2018,267:319−28. doi: 10.1016/j.foodchem.2018.02.111
    [19]
    ZHANG H, ZOU P, ZHAO H, et al. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis[J]. Carbohydrate Polymers,2021,251:117078. doi: 10.1016/j.carbpol.2020.117078
    [20]
    CHEN B J, SHI M J, CUI S, et al. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation[J]. International Journal of Biological Macromolecules,2016,92:715−722. doi: 10.1016/j.ijbiomac.2016.07.082
    [21]
    CAO C, HUANG Q, ZHANG B, et al. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction[J]. International Journal of Biological Macromolecules,2018,109:357−368. doi: 10.1016/j.ijbiomac.2017.12.096
    [22]
    XU Y, NIU X, LIU N, et al. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant ( Ribes nigrum L.) fruits[J]. Food Chemistry,2018,243:26−35. doi: 10.1016/j.foodchem.2017.09.107
    [23]
    魏鑫鑫. 接骨木果实多糖提取分离、纯化及抗氧化活性研究[D]. 泰安:山东农业大学, 2023. [WEI X X. Extraction, isolation, purification and antioxidant activity of polysaccharides from elderberry fruit[D]. Taian:Shandong Agricultural University, 2023.]

    WEI X X. Extraction, isolation, purification and antioxidant activity of polysaccharides from elderberry fruit[D]. Taian: Shandong Agricultural University, 2023.
    [24]
    GUO X, ZOU X, SUN M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius[J]. Carbohydrate Polymers,2010,80(2):344−349. doi: 10.1016/j.carbpol.2009.11.028
    [25]
    TANG Z, WANG Y, HUANG G, et al. Ultrasound-assisted extraction, analysis and antioxidant activity of polysaccharide from the rinds of Garcinia mangostana L[J]. Ultrasonics Sonochemistry,2023,97:106474. doi: 10.1016/j.ultsonch.2023.106474
    [26]
    CHEN Z E, WUFUER R, JI J H, et al. Structural characterization and immunostimulatory activity of polysaccharides from Brassica rapa L[J]. Journal of Agricultural and Food Chemistry,2017,65(44):9685−9692. doi: 10.1021/acs.jafc.7b03902
    [27]
    LIU G, WANG Q, HU Z, et al. Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin[J]. Journal of Agricultural and Food Chemistry,2019,67(18):5212−5220. doi: 10.1021/acs.jafc.9b00950
    [28]
    AL-SHERAJI S H, ISMAIL A, MANAP M Y, et al. Purification, characterization and antioxidant activity of polysaccharides extracted from the fibrous pulp of Mangifera pajang fruits[J]. LWT-Food Science and Technology,2012,48(2):291−296. doi: 10.1016/j.lwt.2012.04.002
    [29]
    ZHANG D, LI S, XIONG Q, et al. Extraction, characterization and biological activities of polysaccharides from Amomum villosum[J]. Carbohydrate Polymers,2013,95(1):114−122. doi: 10.1016/j.carbpol.2013.03.015
    [30]
    XIA F, CAO S, WANG M, et al. Optimizing extraction, structural characterization, and in vitro hypoglycemic activity of a novel polysaccharide component from Lentinus edodes[J]. Food Bioscience,2023,55:103007. doi: 10.1016/j.fbio.2023.103007
    [31]
    WANG L, CHEN C, ZHANG B, et al. Structural characterization of a novel acidic polysaccharide from Rosa roxburghii Tratt fruit and its alpha-glucosidase inhibitory activity[J]. Food & Function,2018,9(7):3974−3985. doi: 10.1039/C8FO00561C
    [32]
    CHEN L, HUANG G. Extraction, characterization and antioxidant activities of pumpkin polysaccharide[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A):770-774.
    [33]
    YAO H Y, WANG J Q, YIN J Y, et al. A review of NMR analysis in polysaccharide structure and conformation:Progress, challenge and perspective[J]. Food Research International,2021,143:110290. doi: 10.1016/j.foodres.2021.110290
    [34]
    WANG Z B, PEI J J, MA H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014,109:49−55. doi: 10.1016/j.carbpol.2014.03.057
    [35]
    MUNTEANU I G, APETREI C. Analytical methods used in determining antioxidant activity:A review[J]. International Journal of Molecular Sciences,2021,22(7):3380−3380. doi: 10.3390/ijms22073380
    [36]
    ASADUZZAMAN A K M, HASAN I, RAHMAN M H, et al. Antioxidant and antiproliferative activity of phytoconstituents identified from Sargassum binderi seaweed extracts cultivated in Bangladesh[J]. International Journal of Biosciences,2020,16(3):481−494.
    [37]
    KAMRAN F, PHILLIPS M, HARMAN D G, et al. Antioxidant activities of lupin ( Lupinus angustifolius) protein hydrolysates and their potential for nutraceutical and functional foods[J]. Food Chemistry Advances,2023,2:100297. doi: 10.1016/j.focha.2023.100297
    [38]
    WANG Y, WU J, SHEN R, et al. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin[J]. Journal of Bioresources and Bioproducts,2023,8(3):306−317. doi: 10.1016/j.jobab.2023.05.001
    [39]
    WANG Y, YANG Z, WEI X. Sugar compositions, alpha-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods[J]. International Journal of Biological Macromolecules,2010,47(4):534−539. doi: 10.1016/j.ijbiomac.2010.07.007
    [40]
    KAJARIA D, RANJANA, TRIPATHI J, et al. In-vitro alpha amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug-Shirishadi[J]. Journal of Advanced Pharmaceutical Technology & Research,2013,4(4):206−209. doi: 10.4103/2231-4040.121415
    [41]
    WANG L, LIU F, WANG A, et al. Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin ( Cucurbita moschata) seeds[J]. Food Hydrocoll,2017,66:357−364. doi: 10.1016/j.foodhyd.2016.12.003
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 李姝琪,李志恒,李华爽,柳志诚,刘永刚. 中药提取物、活性成分及复方对酒精性肝损伤保护作用的研究进展. 中成药. 2025(01): 139-147 .
    2. 任凯利,樊如燕,师艳红,张燕,郭景慧,刘玉玲. 天然产物活性成分缓解酒精性肝损伤的研究进展. 医学理论与实践. 2025(04): 576-578+582 .
    3. 覃萍,苏阳静,陈永苗,郑瑞瑶,钟佳妮,叶晓燕,葛跃伟,陈阿丽. 基于UHPLC-Q-Exactive Orbitrap-MS的三种基原溪黄草及其干预小鼠肝纤维化的血清化学研究. 中南药学. 2024(02): 296-301 .
    4. 李小敏,张佳涵,梁宏轩,黄镇江,张振霞,郑玉忠,陈良辉,刘亚群. 基于数据挖掘探究溪黄草药用成分及潜在抗癌的作用机制. 现代医药卫生. 2024(06): 930-935+940 .
    5. 吴奕霖,覃素萍,李小敏,蓝小梅,吴长亮. 壮医药治疗酒精性肝病的研究进展. 中国民族医药杂志. 2024(11): 51-55 .
    6. 王晨,宋立孝,程金来,谭余庆,杨米一,赵保胜. 葛菊护肝片调节NF-κB和Bcl-2/Bax信号通路改善酒精所致的小鼠肝脏损伤. 中国实验方剂学杂志. 2023(18): 17-25 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (255) PDF downloads (41) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return