QIU Xiaoming, GUO Xin, HUANG Congliang. Effect of Polyphenols from Enteromorpha prolifera on Reducing Blood Glucose in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2024, 45(1): 318−324. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030168.
Citation: QIU Xiaoming, GUO Xin, HUANG Congliang. Effect of Polyphenols from Enteromorpha prolifera on Reducing Blood Glucose in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2024, 45(1): 318−324. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030168.

Effect of Polyphenols from Enteromorpha prolifera on Reducing Blood Glucose in Type 2 Diabetic Mice

More Information
  • Received Date: March 16, 2023
  • Available Online: November 05, 2023
  • Objective: The aim of this work was to explore the hypoglycemic effect of Enteromorpha prolifera polyphenols (EPP) on type 2 diabetic mice, and to provide theoretical basis for the development of EPP products. Methods: EPP crude was extracted from Enteromorpha prolifera by ethanol solution extraction, and purified by silica gel column chromatography. The model of type 2 diabetes in mice was established by alloxan. The experimental mice were divided into blank control group, model control group, EPP low dose group (EPP-L), EPP midium dose group (EPP-M), EPP high dose group (EPP-H), and positive control group. The basic indicators of mice, as well as lipid metabolism and serum antioxidant indicators, were measured by continuous gastric perfusion for 4 weeks. Results: At the 4th week of the experiment, the averaged weight of mice in EPP-H group reached 32.16±1.97 g, which was not significantly different from that of the positive control group (P>0.05). The fasting blood glucose concentration of EPP-H group was 11.78±1.62 mmol/L, and there was no significant difference between EPP-H group and the positive control group (P>0.05). EPP-H clearly had significantly improved both the glucose tolerance (P<0.05) and the abnormal glucose tolerance of mice. The concentrations of superoxide dismutase, catalase, glutathione peroxidase, high-density lipoprotein cholesterol, and serum insulin levels in EPP-H mice were 157.36±6.71 U/mg, 168.07±1.77 U/mg, 378.14±9.74 U/mg, 1.31±0.04 mmol/L, and 19.03±2.01 mU/L, respectively, compared with the model control group, it was significantly increased (P<0.01), and the contents of malondialdehyde, triglyceride, total cholesterol and low-density lipoprotein cholesterol were significantly decreased (P<0.05). Conclusion: Polyphenols from Enteromorpha prolifera can effectively improve the basal metabolism of type 2 diabetic mice and repair the peroxide damage of diabetic mice, and may play a role in lowering blood sugar.
  • [1]
    王君君, 赖诚诚, 张曙光. 阿卡波糖对2型糖尿病肠道菌群及代谢产物的影响[J]. 中国糖尿病杂志,2022,30(8):633−635. [WANG J J, LAI C C, ZHANG S G. The effect of Acarbose on the intestinal flora and its metabolites in type 2 diabetes mellitus[J]. Chinese Journal of Diabetes,2022,30(8):633−635.] doi: 10.3969/j.issn.1006-6187.2022.08.016

    WANG J J, LAI C C, ZHANG S G. The effect of Acarbose on the intestinal flora and its metabolites in type 2 diabetes mellitus[J]. Chinese Journal of Diabetes, 2022, 30(8): 633−635. doi: 10.3969/j.issn.1006-6187.2022.08.016
    [2]
    LIU J, PENG B, YIN Z. A hybrid machine learning method for diabetes detection based on unsupervised clustering[C]// Proceedings of the 2023 7th International Conference on Machine Learning and Soft Computing. Chongqing, China:2023:144−149.
    [3]
    KUMAR A S, MAIYA A G, SHASTRY B A, et al. Exercise and insulin resistance in type 2 diabetes mellitus:A systematic review and meta-analysis[J]. Annals of Physical and Rehabilitation Medicine,2019,62(2):98−103. doi: 10.1016/j.rehab.2018.11.001
    [4]
    李玉秀. 不同降血糖药物之间的相互作用[J]. 药品评价,2009,6(7):285−286. [LI Y X. Interaction between different hypoglycemic drugs[J]. Drug Evaluation,2009,6(7):285−286.] doi: 10.3969/j.issn.1672-2809.2009.07.012

    LI Y X. Interaction between different hypoglycemic drugs[J]. Drug Evaluation, 2009, 6(7): 285−286. doi: 10.3969/j.issn.1672-2809.2009.07.012
    [5]
    丁仁凤, 何普明, 揭国良. 茶多糖和茶多酚的降血糖作用研究[J]. 茶叶科学,2005,25(3):219−224. [DING R F, HE P M, JIE G L. Study on the hypoglycemic mechanism of tea polysaccharides and tea polyphenols[J]. Journal of Tea Science,2005,25(3):219−224.] doi: 10.3969/j.issn.1000-369X.2005.03.011

    DING R F, HE P M, JIE G L. Study on the hypoglycemic mechanism of tea polysaccharides and tea polyphenols[J]. Journal of Tea Science, 2005, 25(3): 219−224. doi: 10.3969/j.issn.1000-369X.2005.03.011
    [6]
    TARRY-ADKINS J L, GRANT I D, OZANNE S E, et al. Efficacy and side effect profile of different formulations of Metformin:A systematic review and meta-analysis[J]. Diabetes Therapy,2021,12(7):1901−1914. doi: 10.1007/s13300-021-01058-2
    [7]
    MAPA B C, ARAÚJO L U, SILVA-BARCELLOS N M, et al. Gliclazide:Biopharmaceutics characteristics to discuss the biowaiver of immediate and extended release tablets[J]. Applied Sciences,2020,10(20):7131. doi: 10.3390/app10207131
    [8]
    SUO F, YOU X, YIN S, et al. Preparation and characterization of biochar derived from co-pyrolysis of Enteromorpha prolifera and corn straw and its potential as a soil amendment[J]. Science of the Total Environment,2021,798:149167. doi: 10.1016/j.scitotenv.2021.149167
    [9]
    HAO Z, LIU J, HE X, et al. Electromagnetic absorption enhancing mechanisms by modified biochar derived from Enteromorpha prolifera:A combined experimental and simulation study[J]. Nanoscale,2022,14(39):14508−14519. doi: 10.1039/D2NR04162F
    [10]
    ZHONG R, WAN X, WANG D, et al. Polysaccharides from marine Enteromorpha:Structure and function[J]. Trends in Food Science & Technology,2020,99:11−20.
    [11]
    PRADHAN B, PATRA S, BEHERA C, et al. Enteromorpha compressa extract induces anticancer activity through apoptosis and autophagy in oral cancer[J]. Molecular Biology Reports,2020,47:9567−9578. doi: 10.1007/s11033-020-06010-4
    [12]
    WASSIE T, NIU K, XIE C, et al. Extraction techniques, biological activities and health benefits of marine algae Enteromorpha prolifera polysaccharide[J]. Frontiers In Nutrition,2021,8:747928. doi: 10.3389/fnut.2021.747928
    [13]
    PRADHAN B, PATRA S, BEHERA C, et al. Preliminary investigation of the antioxidant, anti-diabetic, and anti-inflammatory activity of Enteromorpha intestinalis extracts[J]. Molecules,2021,26(4):1171. doi: 10.3390/molecules26041171
    [14]
    YU C, ZHOU C, TAN Z, et al. Effects of Enteromorpha polysaccharide dietary addition on the diversity and relative abundance of ileum flora in laying hens[J]. Microbial Pathogenesis,2021,158:105004. doi: 10.1016/j.micpath.2021.105004
    [15]
    SU B, GE B, LI M, et al. Extraction, characterization and deoxy-liquefaction of crude polysaccharide from Enteromorpha prolifera to high-quality liquid oil[J]. Fuel,2019,237:763−768. doi: 10.1016/j.fuel.2018.10.083
    [16]
    NGUYEN T H, SUNWOO I Y, RA C H, et al. Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation[J]. Bioprocess and Biosystems Engineering,2019,42:415−424. doi: 10.1007/s00449-018-2045-6
    [17]
    LIN G, LIU X, YAN X, et al. Role of green macroalgae Enteromorpha prolifera polyphenols in the modulation of gene expression and intestinal microflora profiles in type 2 diabetic mice[J]. International Journal of Molecular Sciences,2018,20(1):25. doi: 10.3390/ijms20010025
    [18]
    YAN X, YANG C, LIN G, et al. Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice[J]. Journal of Food Science,2019,84(1):165−173. doi: 10.1111/1750-3841.14415
    [19]
    GUO F, HAN M, LIN S, et al. Enteromorpha prolifera polysaccharide prevents high-fat diet-induced obesity in hamsters:A NMR-based metabolomic evaluation[J]. Journal of Food Science,2021,86(8):3672−3685. doi: 10.1111/1750-3841.15818
    [20]
    邱立, 谷贵章, 王欣宇, 等. 浒苔多酚对肥胖小鼠血脂代谢及肠道菌群的调节作用[J]. 核农学报,2022,36(8):1638−1647. [QIU L, GU G Z, WANG X Y, et al. Enteromorpha prolifera polyphenols regulate lipid metabolism and intestinal flora in obese mice[J]. Journal of Nuclear Agricultural Sciences,2022,36(8):1638−1647.] doi: 10.11869/j.issn.100-8551.2022.08.1638

    QIU L, GU G Z, WANG X Y, et al. Enteromorpha prolifera polyphenols regulate lipid metabolism and intestinal flora in obese mice[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(8): 1638−1647. doi: 10.11869/j.issn.100-8551.2022.08.1638
    [21]
    李锋, 蔡振辉, 陈金梅, 等. 浒苔多酚的抗氧化及改善胰岛素抵抗作用[J]. 现代食品科技,2016,8(8):34−41. [LI F, CAI Z H, CHEN J M, et al. Antioxidant activity of Enteromorpha prolifera polyphenols and their effect on improving insulin resistance[J]. Modern Food Science and Technology,2016,8(8):34−41.]

    LI F, CAI Z H, CHEN J M, et al. Antioxidant activity of Enteromorpha prolifera polyphenols and their effect on improving insulin resistance[J]. Modern Food Science and Technology, 2016, 8(8): 34−41.
    [22]
    GEORGÉ S, BRAT P, ALTER P, et al. Rapid determination of polyphenols and vitamin C in plant-derived products[J]. Journal of Agricultural and Food Chemistry,2005,53(5):1370−1373. doi: 10.1021/jf048396b
    [23]
    EL GHOUL J, SMIRI M, GHRAB S, et al. Antihyperglycemic, antihyperlipidemic and antioxidant activities of traditional aqueous extract of Zygophyllum album in streptozotocin diabetic mice[J]. Pathophysiology,2012,19(1):35−42. doi: 10.1016/j.pathophys.2011.12.001
    [24]
    宓文佳, 陈素红, 吕圭源, 等. 铁皮石斛根提取物对2型糖尿病模型小鼠的降糖作用研究[J]. 中药药理与临床,2015,31(1):125−129 [FU W J, CHEN S H, LÜ G Y, et al. Hypoglycemic effect of Dendrobium candidum root extract on type 2 diabetic mice[J]. Pharmacology and Clinics of Chinese Materia Medica,2015,31(1):125−129.]

    FU W J, CHEN S H, LÜ G Y, et al. Hypoglycemic effect of Dendrobium candidum root extract on type 2 diabetic mice[J]. Pharmacology and Clinics of Chinese Materia Medica, 2015, 31(1): 125−129.
    [25]
    ANDRIKOPOULOS S, BLAIR A R, DELUCA N, et al. Evaluating the glucose tolerance test in mice[J]. American Journal of Physiology-Endocrinology and Metabolism,2008,295(6):1323−1332. doi: 10.1152/ajpendo.90617.2008
    [26]
    ROHILLA A, ALI S. Alloxan induced diabetes mechanisms and effects[J]. International Journal of Research in Pharmaceutical and Biomedical Sciences,2012,3(2):819−823.
    [27]
    BARBER T M, KYROU I, RANDEVA H S, et al. Mechanisms of insulin resistance at the crossroad of obesity with associated metabolic abnormalities and cognitive dysfunction[J]. International Journal of Molecular Sciences,2021,22(2):546. doi: 10.3390/ijms22020546
    [28]
    CHE T, YAN C, TIAN D, et al. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes:A randomised controlled trial[J]. Nutrition & Metabolism,2021,18:1−10.
    [29]
    XIA Z, JIANG X, LI K, et al. Curcumin inhibits alloxan-induced pancreatic islet cell damage via antioxidation and antiapoptosis[J]. Journal of Biochemical and Molecular Toxicology,2020,34(7):e22499. doi: 10.1002/jbt.22499
    [30]
    HUANG P, HONG J, MI J, et al. Polyphenols extracted from Enteromorpha clathrata alleviates inflammation in lipopolysaccharide-induced RAW 264.7 cells by inhibiting the MAPKs/NF-κB signaling pathways[J]. Journal of Ethnopharmacology,2022,286:114897. doi: 10.1016/j.jep.2021.114897
    [31]
    GONZALEZ J T, BETTS J A. Dietary sugars, exercise and hepatic carbohydrate metabolism[J]. Proceedings of the Nutrition Society,2019,78(2):246−256. doi: 10.1017/S0029665118002604
    [32]
    LIN W T, WANG W X, LIAO D D, et al. Polysaccharides from Enteromorpha prolifera improve glucose metabolism in diabetic rats[J]. J Diabetes Res,2015,2015:675201.
    [33]
    DARENSKAYA M A, KOLESNIKOVA L I, RYCHKOVA L V, et al. Relationship between lipid metabolism state, lipid peroxidation and antioxidant defense system in girls with constitutional obesity[J]. Aims Molecular Science,2021,8(2):117−126. doi: 10.3934/molsci.2021009
    [34]
    HONG J, HUANG P, SUN B, et al. Protective effects of Ulva clathrata derived polyphenols against oxidative stress in lipopolysaccharide-induced RAW 264.7 cells via Nrf2/HO-1 pathway[J]. Journal of Applied Phycology,2022,34(5):2657−2669. doi: 10.1007/s10811-022-02789-w
    [35]
    CRITCHLEY J A, CAREY I M, HARRIS T, et al. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study[J]. Diabetes Care,2018,41(10):2127−2135. doi: 10.2337/dc18-0287
    [36]
    ZHAO C, YANG C, LIU B, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits[J]. Trends in Food Science & Technology,2018,72:1−12.
    [37]
    王云威, 王景雪. 铁皮石斛多糖对2型糖尿病小鼠降糖降脂的作用[J]. 食品科学,2020,41(21):127−132. [WANG Y W, WANG J X, CHEN J M, et al. Hypoglycemic and lipid-lowering effects of polysaccharides from Dendrobium officinale stems in type 2 diabetic mice[J]. Food Science,2020,41(21):127−132.] doi: 10.7506/spkx1002-6630-20191101-001

    WANG Y W, WANG J X, CHEN J M, et al. Hypoglycemic and lipid-lowering effects of polysaccharides from Dendrobium officinale stems in type 2 diabetic mice[J]. Food Science, 2020, 41(21): 127−132. doi: 10.7506/spkx1002-6630-20191101-001
    [38]
    ABO-SHADY A M, GHEDA S F, ISMAIL G A, et al. Antioxidant and antidiabetic activity of algae[J]. Life,2023,13(2):460. doi: 10.3390/life13020460
    [39]
    FELDMAN F, KOUDOUFIO M, DESJARDINS Y, et al. Efficacy of polyphenols in the management of dyslipidemia:A focus on clinical studies[J]. Nutrients,2021,13(2):672. doi: 10.3390/nu13020672
    [40]
    BEHL T, BUNGAU S, KUMAR K, et al. Pleotropic effects of polyphenols in cardiovascular system[J]. Biomedicine & Pharmacotherapy,2020,130:110714.
  • Related Articles

    [1]LÜ Haokun, YANG Tenghui, WU Qici, PAN Yutian, XUE Yu. Exploring the Effect of Glucosamine Hydrochloride on Liver Cancer Using Zebrafish Liver Cancer Model[J]. Science and Technology of Food Industry, 2024, 45(20): 332-340. DOI: 10.13386/j.issn1002-0306.2023110259
    [2]SUN Yi, XIA Hongzhi, NIU Kun, LI Jiangbo, ZHU Yulei, LI Guyue, YIN Zhongyan. Effect of Vitamin K2 Alone and in Combination with Calcium on the Bone Health Improvement and Mechanism in Zebrafish Model[J]. Science and Technology of Food Industry, 2024, 45(3): 320-327. DOI: 10.13386/j.issn1002-0306.2023030026
    [3]LIU Juncai, GE Zhen, JIANG Xiao, CUI Baojin, ZHANG Ping, SUN Jian'an, MAO Xiangzhao. Effects of Royal Jelly Peptide on Motor Ability and Gene Expression in Zebrafish Model of Alzheimer's Disease[J]. Science and Technology of Food Industry, 2023, 44(21): 395-401. DOI: 10.13386/j.issn1002-0306.2023010021
    [4]JIN Lingtai, ZHANG Ming, FANG Shuangqi, XU Qiang. Study on Lowering Uric Acid Effect and Component Analysis of Drug Food Homologous Compound Based on Zebrafish Model[J]. Science and Technology of Food Industry, 2023, 44(19): 410-416. DOI: 10.13386/j.issn1002-0306.2022110251
    [5]WANG Shengnan, FU Xiaoting, XU Jiachao, GAO Xin. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356-365. DOI: 10.13386/j.issn1002-0306.2020120007
    [6]ZHANG Yingyu, PUBU Duoji, LU Cong, WANG Fengzhong. Screening of Uric Acid-lowering Food and Medicinal Materials Based on Inhibiting Xanthine Oxidase Activity and Zebrafish Hyperuricemia Model[J]. Science and Technology of Food Industry, 2021, 42(12): 334-339. DOI: 10.13386/j.issn1002-0306.2020080220
    [7]NI Li-ying, ZOU Ya-xue, FU Xiao-ting, DUAN De-lin, XU Jia-chao, GAO Xin. Anti-inflammatory Mechanism of Phenolic Compounds from Sargassum fusiforme by LPS-induced Zebrafish Embryo Model[J]. Science and Technology of Food Industry, 2019, 40(21): 279-285. DOI: 10.13386/j.issn1002-0306.2019.21.046
    [8]ZOU Ya-xue, FU Xiao-ting, Duan De-lin, XU Jia-chao, GAO Xin, Wang Xue-liang. Antioxidant Activities of Agaro-oligosaccharides in AAPH-induced Zebrafish Model[J]. Science and Technology of Food Industry, 2019, 40(4): 286-291,298. DOI: 10.13386/j.issn1002-0306.2019.04.048
    [9]HOU Cai-ping, HAN Li-wen, ZHANG Feng, CHU Jie, ZHANG Xuan-ming, WANG Rong-chun, CHEN Xi-qiang, WANG Dai-jie, LIU Ke-chun, TIAN Qing-ping, HE Qiu-xia. Study on the antioxidant activity of isochlorogenic acid A[J]. Science and Technology of Food Industry, 2017, (12): 72-76. DOI: 10.13386/j.issn1002-0306.2017.12.013
    [10]LI Quan-guo, CHU Jie, CHEN Xi-qiang, WANG Jun-gao, WU Xiao-min, LIU Ke-chun. Study on the antioxidant activity evaluation of Jujube ( Ziziphus) leaf flavonoids in vitro and zebrafish ( Danio rerio) with fluorescent skin[J]. Science and Technology of Food Industry, 2014, (05): 58-61. DOI: 10.13386/j.issn1002-0306.2014.05.071
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (94) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return