ZHONG Jingshi, WANG Gongming, ZHANG Jian, et al. Study on Immune-enhancing Activity of Gonad Saponins from Female of Apostichopus japonicus[J]. Science and Technology of Food Industry, 2022, 43(23): 378−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030289.
Citation: ZHONG Jingshi, WANG Gongming, ZHANG Jian, et al. Study on Immune-enhancing Activity of Gonad Saponins from Female of Apostichopus japonicus[J]. Science and Technology of Food Industry, 2022, 43(23): 378−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030289.

Study on Immune-enhancing Activity of Gonad Saponins from Female of Apostichopus japonicus

More Information
  • Received Date: March 22, 2022
  • Available Online: September 28, 2022
  • Objective: Taking gonad saponins from female of Apostichopus japonicus (AGS) as the research object to explore its immune-enhancing activity. Methods: The immunoregulatory activity of AGS in vitro was studied by measuring the phagocytosis and cytokines of macrophages. Thereafter the immunoregulatory activity of AGS in immunocompromised mice was analyzed by measuring thymus and spleen index, carbon clearance index and phagocytic index, proliferation activity of peritoneal macrophages, spleen cells, NK cell activity, T lymphocyte subsets level and serum cytokines of mice. Results: In vitro experiments showed that AGS could improve the phagocytic ability of macrophages and enhance the secretion of TNF-α, IL-6 and IFN-γ, and each group was significantly different from the normal group (P<0.05). In vivo experiments showed that compared with model group, AGS in middle dose group and high dose group could significantly increase thymus and spleen index, carbon clearance index and phagocytosis index (P<0.05), significantly enhance the proliferation activity of peritoneal macrophages and spleen cells (P<0.05), significantly enhance the activity of NK cells (P<0.05), significantly increase the level of CD4+/CD8+ (P<0.05), and significantly promote the secretion of TNF-α, IL-6, and IFN-γ (P<0.05). Conclusion: AGS exhibits immune-enhancing activity both in vitro and in vivo.
  • [1]
    姜会超, 刘爱英, 宋秀凯, 等. 重金属胁迫对刺参胚胎发育的影响[J]. 水生生物学报,2014,38(2):393−400. [JIANG H C, LIU A Y, SONG X K, et al. The toxic effects of heavy metals on the embryonic development of Apostichopus[J]. Acta Hydrobiologica Sinica,2014,38(2):393−400. doi: 10.7541/2014.56
    [2]
    段续, 王辉, 任广跃, 等. 海参的干制技术及其研究进展[J]. 食品工业科技,2012,33(10):427−431. [DUAN X, WANG H, REN G Y, et al. Research progress of dry-cure technology of sea cucumber[J]. Science and Technology of Food Industry,2012,33(10):427−431. doi: 10.13386/j.issn1002-0306.2012.10.103
    [3]
    DAI Y L, KIM E A, LUO H M, et al. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus)[J]. International Journal of Food Science and Technology,2020,57(6):2283−2292. doi: 10.1007/s13197-020-04266-z
    [4]
    WANG Z, ZHANG H, YUAN W, et al. Antifungal nortriterpene and triterpene glycosides from the sea cucumber Apostichopus japonicus selenka[J]. Food Chemistry,2012,132(1):295−300. doi: 10.1016/j.foodchem.2011.10.080
    [5]
    刘昕, 刘京熙, 张健, 等. 仿刺参卵多糖的分离纯化及体外抗肿瘤活性[J]. 食品科学,2016,37(23):105−110. [LIU X, LIU J X, ZHANG J, et al. Purification and antitumor activity in vitro of polysaccharides from Apostichopus japonicus spawn[J]. Food Science,2016,37(23):105−110. doi: 10.7506/spkx1002-6630-201623018
    [6]
    向怡卉, 苏秀榕, 董明敏, 等. 复合蛋白酶水解海参生殖腺工艺的研究[J]. 食品工业科技,2007,28(3):143−144, 146. [XIANG Y H, SU X R, DONG M M, et al. Study on hydrolysis of sea cucumber gonads by compound protease[J]. Science and Technology of Food Industry,2007,28(3):143−144, 146. doi: 10.3969/j.issn.1002-0306.2007.03.042
    [7]
    钱颖, 黄容容, 孙锐, 等. 人参皂苷Rh2对免疫低下小鼠的免疫调节作用[J]. 医药导报,2018,37(12):1446−1454. [QIAN Y, HUANG R R, SUN Y, et al. Effect of ginsenoside Rh2 on immune regulation of immunocompromised mice[J]. Herald of Medicine,2018,37(12):1446−1454.
    [8]
    吴雨龙, 朱华, 张艺鏻, 等. 菊苣多糖对免疫抑制小鼠免疫功能的影响[J]. 食品工业科技,2021,42(3):284−289, 337. [WU Y L, ZHU H, ZHANG Y L, et al. Effect of chicory polysaccharide on immune function in immunosuppressed mice[J]. Science and Technology of Food Industry,2021,42(3):284−289, 337. doi: 10.13386/j.issn1002-0306.2020030168
    [9]
    GE Y, LI C, REN H, et al. Effects of ginseng saponin Rh_(2) injection on immune function of H_(22) cancer mice[J]. Special Wild Economic Animal and Plant Research,2002,24(3):4−7.
    [10]
    张长城, 姜美杰, 赵海霞, 等. 竹节参总皂苷对环磷酰胺致免疫低下小鼠免疫功能的影响[J]. 中成药,2011,33(7):1134−1138. [ZHANG C C, JIANG M J, ZHAO H X, et al. Effects of total saponins of Panax japonicus rhizoma on cyclophosphamide-induced immunosuppressed mice[J]. Chinese Traditional Patent Medicine,2011,33(7):1134−1138. doi: 10.3969/j.issn.1001-1528.2011.07.011
    [11]
    王静凤, 傅佳, 王玉明, 等. 革皮氏海参皂苷对小鼠免疫功能的调节作用[J]. 中国海洋大学学报(自然科学版),2010,40(2):28−32. [WANG J F, FU J, WANG Y M, et al. Effects of saponins of Pearsonothuria graeffei on immune regulation in mice[J]. Periodical of Ocean University of China,2010,40(2):28−32. doi: 10.16441/j.cnki.hdxb.2010.02.005
    [12]
    翟星辰. 壳寡糖免疫增强及对肾癌抑制作用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHAI X C. Research on immune enhancement of chitosan oligosaccharides and its inhibitory effects against renal carcinoma[D]. Harbin: Harbin Institute of Technology, 2019.
    [13]
    董婧媛. 海参皂苷的提取工艺及功能研究[D]. 天津: 天津科技大学, 2020.

    DONG J Y. Study on extraction process and function of sea cucmber saponin[D]. Tianjing: Tianjin University of Science & Technology, 2020.
    [14]
    YU J H, CONG L X, WANG C M, et al. Immunomodulatory effect of Schisandra polysaccharides in cyclophosphamide-induced immunocompromised mice[J]. Experimental and Therapeutic Medicine,2018,15:4755−4762.
    [15]
    刘仁杰, 王春凤, 王刚, 等. 林蛙油活性肽对小鼠免疫功能的影响[J]. 东北林业大学学报,2017,45(1):82−85, 89. [LIU R J, WANG C F, WANG G, et al. Effect of bioactive peptides from the oviductus ranae on immunologic function of mice[J]. Journal of Northeast Forestry University,2017,45(1):82−85, 89. doi: 10.3969/j.issn.1000-5382.2017.01.017
    [16]
    段炳南, 陈庆林. 绞股蓝总皂甙对小鼠腹腔巨噬细胞内酶活性及吞噬功能的影响[J]. 江西医学院学报,2007,47(3):38−40. [DUAN B N, CHEN Q L. Effects of gypenosides on enzyme activity and phagocytic capacity of peritoneal macrophage in mice[J]. Acta Academiae Medicinae Jiangxi,2007,47(3):38−40.
    [17]
    王军. MIF, TGFβ, IFNγ基因多态性与脊柱结核易感性及在椎间盘中的表达与其临床资料的关联研究[D]. 南宁: 广西医科大学, 2017.

    WANG J. Relationship between MIF, TGFβ, IFNγ gene polymorphism and spinal tuberculosis suscepyibility and expression in intervertebral disc and its clinical data[D]. Guangxi: Guangxi Medical University, 2017.
    [18]
    张禹. 基于介孔羟基磷灰石与荧光碳点的免疫佐剂效应研究[D]. 广州: 暨南大学, 2017.

    ZHANG Y. The research on the immune adjuvant effects of mesoporous hydroxylapatite and fluorescent carbon dots[D]. Guangzhou: Jinan University, 2017.
    [19]
    AMININ D L, AGAFONOVA I G, BERDYSHEV E V, et al. Immunomodulatory properties of cucumariosides from the edible far-eastern Holothurian Cucumaria japonica[J]. Journal of Medicinal Food,2001,4(3):127−135. doi: 10.1089/109662001753165701
    [20]
    SAMOILOVA E B, HORTON J L, HILLIARD B, et al. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: Roles of IL-6 in the activation and differentiation of autoreactive T cells[J]. The Journal of Immunology,1998,161(12):6480−6486.
    [21]
    WANG X, WANG Z Q, WU H H, et al. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress[J]. Accepted Manuscript,2018,120:736−744.
    [22]
    BHARDWAJ J, CHAUDHARY N, SEO H J, et al. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway[J]. Immunopharmacology and Immunotoxicology,2014,36(3):202−210. doi: 10.3109/08923973.2014.909849
    [23]
    SINGH K P, GUPTA R K, SHAU H, et al. Effect of ASTA-Z 7575 (INN Maphosphamide) on human lymphokine-activated killer cell induction[J]. Immunopharmacology and Immunotoxicology,1993,15(5):528−538.
    [24]
    DENG J, ZHONG Y F, WU Y P, et al. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage[J]. Redox Biology,2018,14:1−6. doi: 10.1016/j.redox.2017.08.003
    [25]
    PRATHEESHKUMAR P, KUTTAN G. Ameliorative action of Vernonia cinerea L. on cyclophosphamide-induced immunosuppression and oxidative stress in mice[J]. Inflammopharmacology,2010,18(4):197−207. doi: 10.1007/s10787-010-0042-8
    [26]
    王飞. 饲养环境中硫化氢暴露引起小鼠免疫功能变化的初步调查[D]. 保定: 河北农业大学, 2019.

    WANG F. Preliminary investigation on the changes of immune function in mice induced by hydrogen sulfide exposure in breeding environment[D]. Baoding: Hebei Agricultural University, 2019.
    [27]
    杨杰, 卫东锋, 王文潇, 等. 五指毛桃水提物对免疫抑制小鼠细胞免疫的影响[J]. 中药药理与临床,2015,31(6):111−114. [YANG J, WEI D F, WANG W X, et al. Effects of aqueous extract of Ficus hirta on cellular immunity in immunosuppressed mice[J]. Pharmacology and Clinics of Chinese Materia Medica,2015,31(6):111−114. doi: 10.13412/j.cnki.zyyl.2015.06.033
    [28]
    DUGGINA P, KALLA C M, VARIKASUVU S R, et al. Protective effect of centella triterpene saponins against cyclophosphamide-induced immune and hepatic system dysfunction in rats: Its possible mechanisms of action[J]. Journal of Physiology and Biochemistry,2015,71:435−454. doi: 10.1007/s13105-015-0423-y
    [29]
    杜双双. 蚕丝蛋白肽免疫调节及与化疗的联合作用[D]. 天津: 天津医科大学, 2018.

    DU S S. The immunomodulation and combinedeffect with chemotherapy of silk fibroinpeptide[D]. Tianjin: Tianjin Medical University, 2018.
    [30]
    CHEN L X, QI Y L, QI Z, et al. A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice[J]. Molecules,2019,24(6):1096. doi: 10.3390/molecules24061096
    [31]
    YU Q, NIE S P, LI W J, et al. Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum[J]. Phytotherapy Research,2013,27(2):186−191. doi: 10.1002/ptr.4698
    [32]
    LEIRO J M, CASTRO R, ARRANZ J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh[J]. International Immunopharmacology,2007,7(7):879−888. doi: 10.1016/j.intimp.2007.02.007
    [33]
    苗明三, 刘会丽, 杨亚蕾, 等. 无花果多糖对免疫抑制小鼠腹腔巨噬细胞产生IL-1α、脾细胞体外增殖、脾细胞产生IL-2及其受体的影响[J]. 中国现代应用药学,2009,26(7):525−528. [MIAO M S, LIU H L, YANG Y L, et al. Effect of Ficus carica oolysaccharide on the levels of interleukin-la produced by peritoneal macro-phages, lymphocyte proliferation, interleukin-2 and its receptor produced by lymphocyte in immu-nosuppressive mice[J]. Chinese Journal of Modern Applied Pharmacy,2009,26(7):525−528.
    [34]
    ROSISA M, ALEKSANDAR S, DENITSA A, et al. In vitro antitumour and immunomodulating activity of saponins from Astragalus glycyphyllos[J]. Biotechnology & Biotechnological Equipment,2022,35(1):1948−1955.
    [35]
    董毅, 李瑞. 运动与自然杀伤细胞抗病毒等功能的关系和机制[J]. 中国体育科技,2020,56(5):3−13. [DONG Y, LI R. The relationship and underlying mechanism between exercise and functions of NK Cells[J]. China Sport Science and Technology,2020,56(5):3−13.
    [36]
    王静凤, 王奕, 赵林, 等. 日本刺参的抗肿瘤及免疫调节作用研究[J]. 中国海洋大学学报(自然科学版),2007,37(1):93−96,102. [WANG J F, WANG Y, ZHAO L, et al. Effects of Apostichopus japonicus on antitumor and immune regulation in S180 bearing mice[J]. Periodical of Ocean University of China,2007,37(1):93−96,102.
    [37]
    白军, 李博文, 刘淑红. 金丝桃苷对小鼠T淋巴细胞亚群及血清细胞因子的影响[J]. 动物医学进展,2017,38(6):48−51. [BAI J, LI B W, LIU S H. Effects of hyperoside on T cell subset and serum cytokines in mice[J]. Progress in Veterinary Medicine,2017,38(6):48−51. doi: 10.3969/j.issn.1007-5038.2017.06.011
    [38]
    曹晓军, 倪慧萍. 传染性单核细胞增多症患儿T细胞亚群变化及临床意义[J]. 江苏大学学报(医学版),2007,17(5):429−431. [CAO X J, NI H P. Change of T cell subsets in children with infectious mononucleosis and its clinical meanings[J]. Journal of Jiangsu University (Medicine Edition),2007,17(5):429−431. doi: 10.13312/j.issn.1671-7783.2007.05.016
    [39]
    赵建国, 刘玲艳, 朱颖越, 等. 合欢皮总皂苷急性毒理学研究[J]. 天然产物研究与开发,2010,22(4):582−586. [ZHAO J G, LIU L Y, ZHU Y Y, et al. Research on emergency toxicology of total saponin in silktree Albizia bark[J]. Natural Product Reseaech and Development,2010,22(4):582−586. doi: 10.3969/j.issn.1001-6880.2010.04.010
    [40]
    焦园园, 王萍, 赵凤, 等. 基于氧化应激探究PCI损伤及中医药防治进展[J]. 中国实验方剂学杂志,2020,26(4):214−225. [JIAO Y Y, WANG P, ZHAO F, et al. Research on PCI damage based on oxidative stress and progress in prevention and treatment of traditional Chinese medicine[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(4):214−225. doi: 10.13422/j.cnki.syfjx.20200439
    [41]
    唐爱存, 王明刚, 卢秋玉, 等. 葫芦茶苷调控JAK/STAT信号通路抗乙肝病毒作用及其机制研究[J]. 中药药理与临床,2017,33(1):74−77. [TANG A C, WANG M G, LU Q Y, et al. Study on anti-hepatitis B virus activities and mechanisms of tadehaginoside by regulating JAK/STAT signaling pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2017,33(1):74−77. doi: 10.13412/j.cnki.zyyl.2017.01.021
  • Related Articles

    [1]ZHAO Zhiyao, LIU Minghao, BAI Lin, REN Runhan, SHANG Wei, SUN Ying, WENG Yunxuan. Regulation and Analysis of Food Safety Based on Machine Learning[J]. Science and Technology of Food Industry, 2024, 45(11): 11-19. DOI: 10.13386/j.issn1002-0306.2023090288
    [2]LUO Yongdi, TAO Guangcan, YANG Hongbo. Visualization Analysis of Food Safety Traceability System: Based on Bibliometrics[J]. Science and Technology of Food Industry, 2024, 45(9): 367-377. DOI: 10.13386/j.issn1002-0306.2023060032
    [3]LI Qiang, ZHANG Bingyan, DAI Yue, ZHANG Hongrui, LIU Peng. Progress Analysis of International Food Safety Culture Construction and Its Enlightenment to China[J]. Science and Technology of Food Industry, 2024, 45(9): 218-224. DOI: 10.13386/j.issn1002-0306.2023060020
    [4]YAN Zhi- jun, MA Zhou, YU Xin, DU Shu-xin. Food safety evaluation based on the extension method and its application in export food safety supervision[J]. Science and Technology of Food Industry, 2016, (03): 295-298. DOI: 10.13386/j.issn1002-0306.2016.03.053
    [5]GAO Hai-tao, XU Run, CAO Wei-xin, YAN Ye-hui-mei, ZHOU Xu, XU Qian. Food safety risk related to food emulsifiers[J]. Science and Technology of Food Industry, 2015, (23): 280-284. DOI: 10.13386/j.issn1002-0306.2015.23.049
    [6]LI Dan, WANG Shou-wei, ZANG Ming-wu, ZHANG Rui-mei, ZHANG Kai-hua, SHI Cheng-chao. Study on processed food safety situation in China——based on the GAQSIQ data from 2009 to 2012[J]. Science and Technology of Food Industry, 2015, (13): 275-281. DOI: 10.13386/j.issn1002-0306.2015.13.050
    [7]GUO Yan-ping. Consideration on network governance of China food safety[J]. Science and Technology of Food Industry, 2014, (15): 289-292. DOI: 10.13386/j.issn1002-0306.2014.15.055
    [8]Evaluation of urban and rural residents on food safety and implications for food safety risk governance countermeasures[J]. Science and Technology of Food Industry, 2013, (13): 268-271. DOI: 10.13386/j.issn1002-0306.2013.13.006
    [9]Enlightenment of the theory study and practice explore for the food safety index[J]. Science and Technology of Food Industry, 2013, (06): 389-391. DOI: 10.13386/j.issn1002-0306.2013.06.087
    [10]Enlightenment of oversea research methods of food safety for domestic detecting technologies of food[J]. Science and Technology of Food Industry, 2012, (22): 390-394. DOI: 10.13386/j.issn1002-0306.2012.22.090
  • Cited by

    Periodical cited type(8)

    1. 陈荣荣,李文,吴迪,张忠,鲍大鹏,杨焱,陈万超. 大球盖菇风味肽的制备及其抗氧化活性研究. 食品与生物技术学报. 2024(10): 140-152 .
    2. 白慧,陈若飞,阚欢,郭磊. 响应面法优化美味牛肝菌伞部及柄部多酚氧化酶的提取工艺. 粮食与油脂. 2023(07): 138-141 .
    3. 张沙沙,杨宁,张微思,罗晓莉,周锫,曹晶晶,孙达锋. 兰茂牛肝菌酶解液的制备工艺优化及滋味评价. 现代食品科技. 2023(09): 72-80 .
    4. 张娅俐,洪晶,曹竑,田晓静,王婷婷,张福梅,柏家林,丁功涛,马忠仁,宋礼. 胃蛋白酶水解藏羊血清蛋白工艺研究. 安徽农业科学. 2022(03): 174-177+208 .
    5. 栾俊家,张尚悦,李昂达,李学鹏,励建荣,林洪,王明丽,郭晓华,于建洋,周小敏. 响应面法优化秋刀鱼酶解制备抗氧化活性肽的工艺. 食品工业科技. 2022(05): 172-181 . 本站查看
    6. 刘子轩,高雅,王文倩,章慧莺,陈海涛,黄典,曾艳. 不同品种食用菌制备热反应肉味基料风味差异分析. 食品科学技术学报. 2022(01): 30-43 .
    7. 唐寅,吕晓帆,王莹,吴亚妮. 龙脑樟精油的化学成分、抗氧化活性和认知改善作用研究. 日用化学工业. 2021(11): 1095-1101 .
    8. 于莹,宿小杰,周德庆,刘楠,孙永,王珊珊. 响应面法优化紫贻贝免疫活性肽的制备工艺. 中国海洋药物. 2021(06): 21-29 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (174) PDF downloads (9) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return