GAO Jianfei, ZHOU Wei, WEN Ximei, et al. Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs[J]. Science and Technology of Food Industry, 2022, 43(12): 27−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100173.
Citation: GAO Jianfei, ZHOU Wei, WEN Ximei, et al. Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs[J]. Science and Technology of Food Industry, 2022, 43(12): 27−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100173.

Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs

More Information
  • Received Date: October 17, 2021
  • Available Online: April 12, 2022
  • In order to explore Kadsura coccinea fruit development and utilization, widely-targeted metabolomics was used to identify the compounds in different organs of K. coccinea fruit, according to their structural distribution and categories, the diversity and abundance of the secondary metabolites were analyzed. Results: A total of 307 secondary metabolites were identified in the fruit of K. coccinea, among which phenolic acids (38.8%) and flavonoids (27.7%) were the dominant. In particular, 272 were found in the peel, 286 in the pulp, 201 in the seed, and 180 in all three parts. The amount of phenolic acids, flavonoids, and terpenoidswas significantly lower in seed than in pulp and peel, resulting in a lower diversity of secondary metabolites. The abundance of secondary metabolites in the peel (81.62×107) was much higher than that in the pulp (25.61×107) and seed (24.38×107), mainly due to the high enrichment offlavonoids (quercetins, catechins and cyanidins) and the significant up-regulation of alkaloids. The metabolic components were mainly phenolic acids and flavonoids. The peel of K. coccinea was rich in flavonoids (quercetin, catechins and cyanidins, etc), and the seeds were rich in lignins. All three parts contained triterpenoids with novel structures, indicating that the fruit had significant utilization potential and research value.
  • [1]
    国家中医药管理局《中华本草》编委会. 中华本草 [M]. 第2册. 上海: 上海科学技术出版社, 1999: 895.

    Chinese Herbal Medicine Editorial Boards of National Administration of Traditional Chinese Medicine. Chinese herbal medicine [M]. Volume 2. Shanghai: Shanghai Science and Technology Press: 1999: 895.
    [2]
    舒永志, 成亮, 杨培明. 黑老虎的化学成分及药理作用研究进展[J]. 中草药,2011,42(4):805−813. [[SHU Y Z, CHEN L, YANG P M. Advances in studies on chemical constituents in Kadsura coccinea and their pharmacological activities[J]. Chinese Traditional and Herbal Drugs,2011,42(4):805−813.

    [SHU Y Z, CHEN L, YANG P M. Advances in studies on chemical constituents in Kadsura coccinea and their pharmacological activities [J]. Chinese Traditional and Herbal Drugs, 2011, 42(4): 805–813.
    [3]
    BAN N K, THANH B V, KIEM P V, et al. Dibenzocyclooctadiene lignans and lanostane derivatives from the roots of Kadsura coccinea and their protective effects on primary rat hepatocyte injury induced by t-butyl hydroperoxide[J]. Planta Medica,2009,5(11):1253−1257.
    [4]
    SUN J, YAO J Y, HUANG S X. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea[J]. Food Chemistry,2009,117(2):276−281. doi: 10.1016/j.foodchem.2009.04.001
    [5]
    延在昊, 成亮, 孔令义, 等. 黑老虎化学成分及其抗氧化活性研究[J]. 中草药,2013,44(21):2969−2973. [YAN Z H, CHENG L, KONG L Y, et al. Chemical constituents and their anti-oxidative activiities of Kɑdsurɑ coccineɑ[J]. Chinese Traditional and Herbal Drugs,2013,44(21):2969−2973.

    YAN Z H, CHENG L, KONG L Y, et al. Chemical constituents and their anti-oxidative activiities of Kɑdsurɑ coccineɑ[J]. Chinese Traditional and Herbal Drugs, 2013, 44(21): 2969–2973.
    [6]
    杨艳, 高渐飞. 冷饭团不同部位挥发性成分及抗氧化活性分析[J]. 广西植物,2018,38(7):943−952. [YANG Y, GAO J F. Volatile components and their antioxidant activities in different parts of Kadsura coccinea[J]. Guihaia,2018,38(7):943−952. doi: 10.11931/guihaia.gxzw201708005

    YANG Y, GAO J F. Volatile components and their antioxidant activities in different parts of Kadsura coccinea [J]. Guihaia, 2018, 38(7): 943–952. doi: 10.11931/guihaia.gxzw201708005
    [7]
    YANG Y P, NUSTAT H, ZHANG L, et al. Kadsura coccinea: A rich source of structurally diverse and biologically important compounds[J]. Chinese Herbal Medicines,2020,12(3):15−24.
    [8]
    高渐飞, 李苇洁, 龙世林. 冷饭团营养成分与利用价值研究[J]. 中国南方果树,2016,45(5):84−87. [GAO J F, YANG Y, LONG S L. Analysis and evaluation on the nutritional components of of Kadsura coccinea fruit[J]. South China Fruits,2016,45(5):84−87.

    GAO J F, YANG Y, LONG S L. Analysis and Evaluation on the Nutritional Components of of Kadsura coccinea fruit [J]. South China Fruits, 2016, 45(5): 84–87.
    [9]
    邹建文, 饶红欣, 何润华, 等. 粉碎粒度对黑老虎果浆理化性质和内含物含量的影响[J]. 南方农业学报,2019,50(11):2532−2538. [ZOU J W, RAO H X, HE R H, et al. Effects of crushing mesh number on physicochemical properties and contents of embedded components for Kadsura coccinea fruit pulps[J]. Journal of Southern Agriculture,2019,50(11):2532−2538. doi: 10.3969/j.issn.2095-1191.2019.11.21

    ZOU J W, RAO H X, HE R H, et al. Effects of crushing mesh number on physicochemical properties and contents of embedded components for Kadsura coccinea fruit pulps [J]. Journal of Southern Agriculture, 2019, 50(11): 2532–2538. doi: 10.3969/j.issn.2095-1191.2019.11.21
    [10]
    洪荣艳, 王森, 邵凤侠, 等. 黑老虎表型性状相关性及主成分分析[J]. 森林与环境学报,2020,40(5):542−547. [HONG R Y, WANG S, SHAO F X, et al. Correlation and principal component analysis of phenotypic traits of channel Kadsura coccinea[J]. Journal of Forest and Environment,2020,40(5):542−547.

    HONG R Y, WANG S, SHAO F X, et al. Correlation and principal component analysis of phenotypic traits of channel Kadsura coccinea [J]. Journal of Forest and Environment, 2020, 40(5): 542–547.
    [11]
    刘笑宏, 宋一超, 刘兆宇, 等. 直立/水平两种叶幕对'摩尔多瓦'葡萄次生代谢产物含量的影响[J]. 果树学报, 2019, 36(3): 308–317

    LIU X H, SONG Y C, LIU Z Y, et al. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape [J]. Journal of Fruit Science, 36(3): 308–317.
    [12]
    谢玮. 黔东黑老虎果营养品质评价[J]. 食品工业科技,2019,40(11):249−253. [XIE W. Nutritional quality evaluation of Kadsura coccinea fruit in East Guizhou[J]. Science and Technology of Food Industry,2019,40(11):249−253.

    XIE W. Nutritional quality evaluation of Kadsura coccinea fruit in East Guizhou [J]. Science and Technology of Food Industry, 2019, 40(11): 249–253.
    [13]
    毛云玲, 付玉嫔, 祁荣频, 等. 云南黑老虎不同种源氨基酸和其他指标的分析与评价[J]. 氨基酸和生物资源,2015,37(2):14−19. [MAO Y L, FU Y P, QI R P, et al. Analysis and evaluation of amino acids and other indicators of Kadsura coccinea from different areas of Yunnan[J]. Amino Acids & Biotic Resources,2015,37(2):14−19.

    MAO Y L, FU Y P, QI R P, et al. Analysis and evaluation of amino acids and other indicators of Kadsura coccinea from different areas of Yunnan [J]. Amino Acids & Biotic Resources, 2015, 37(2): 14–19.
    [14]
    WARREN, LAU, ELIZABETH, et al. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science,2015,349(6253):1224−1228. doi: 10.1126/science.aac7202
    [15]
    XU L, XU Z Z, WANG X, et al. The application of pseudotargeted metabolomics method for fruit juices discrimination[J]. Food Chem,2020,316:126278. doi: 10.1016/j.foodchem.2020.126278
    [16]
    方贤胜, 吴涛, 肖良俊. 基于广泛靶向代谢组学的浅黄色和紫色核桃内种皮成分差异分析[J]. 食品科学,2020,40(9):769−774. [FANG X S, WU T, XIAO L J. Differential analysis of the metabolites on kernel pellicles between light yellow and purple walnuts by widely targeted metabolomics[J]. Food Science,2020,40(9):769−774.

    FANG X S, WU T, XIAO L J. Differential analysis of the metabolites on kernel pellicles between light yellow and purple walnuts by widely targeted metabolomics [J]. Food Science, 2020, 40(9): 769–774.
    [17]
    FRAGA C G, CLOWERS B H, MOORE R J, et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics[J]. Analytical Chemistry,2010,82(10):4165−4173. doi: 10.1021/ac1003568
    [18]
    THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research,2015,14(8):3322−35. doi: 10.1021/acs.jproteome.5b00354
    [19]
    李里, 王静, 宋亚倩, 等. 黑老虎果皮和种子的抗氧化、抑菌和抑酶活性[J]. 经济林研究,2020,38(3):237−244. [LI Li, WANG J, SONG Y Q, et al. The antioxidant, antibacterial and enzyme inhibitory activities of the peel and seed of Kadsura coccinea[J]. Non-wood Forest Research,2020,38(3):237−244.

    LI Li, WANG J, SONG Y Q, et al. The antioxidant, antibacterial and enzyme inhibitory activities of the peel and seed of Kadsura coccinea [J]. Non-wood Forest Research, 2020, 38(3): 237–244.
    [20]
    任伟光, 张翠英. 五味子的研究进展及质量标志物(Q-marker)的预测分析[J]. 中草药,2020,51(11):259−265. [REN W G, ZHANG C W. Research progress ofSchisandra chinensis and predictive analysis of Q-marker[J]. Chinese Traditional and Herbal Drugs,2020,51(11):259−265.

    REN W G, ZHANG C W. Research progress of Schisandra chinensis and predictive analysis of Q-marker [J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 259–265.
    [21]
    GAO X M, PU J X, HUANG S X, et al. Lignans from Kadsura angustifolia[J]. Journal of Natural Products,2008,71(4):558−563. doi: 10.1021/np0705108
    [22]
    HU W, LI L, WANG Q, et al. Dibenzocyclooctadiene lignans from Kadsura coccinea[J]. Journal of Asian Natural Products Research,2012,14:364−369. doi: 10.1080/10286020.2011.654334
    [23]
    ZHAO Q J, SONG Y, CHEN H S. Cytotoxic dibenzocyclooctadiene lignans from Kadsura coccinea[J]. Archives of Pharmacal Research,2014,37:1375−1379. doi: 10.1007/s12272-013-0186-3
    [24]
    LIU Y B, YANG Y P, SHUMAILA T, et al. Lignans from tujia ethnomedicine heilaohu: Chemical characterization and evaluation of their cytotoxicity and antioxidant activities[J]. Molecules,2018,23(9):2147. doi: 10.3390/molecules23092147
    [25]
    PU J X, YANG L M, XIAO W L, et al. Compounds from Kadsura heteroclita and related anti-HIV activity[J]. Phytochemistry,2008,69:1266−1272. doi: 10.1016/j.phytochem.2007.11.019
    [26]
    ALEKSANDRA K, DOROTA S W. Flavonoids-food sources and health benefits[J]. Roczniki Państwowego Zakadu Higieny,2014,65(2):79−85.
    [27]
    CHOU C C, YANG J S, LU H F, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells[J]. Archives of Pharmacal Research,2010,33:1181−1191. doi: 10.1007/s12272-010-0808-y
    [28]
    NANCE C L, SIWAK E B, SHEARER W T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy[J]. Journal of Allergy & Clinical Immunology,2009,123(2):459−465.
    [29]
    TADASHI, NAKANISHI, KAYO, et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors[J]. European Journal of Oral Sciences,2010,118(2):145−150. doi: 10.1111/j.1600-0722.2010.00714.x
    [30]
    刘珊丽, 刘宗文, 卢沛琦, 等. 儿茶素对大鼠脑缺血/再灌注损伤的保护作用及机制[J]. 中国药理学通报, 2010, 26(2): 255–257

    LIU S L, LIU Z W, LU P Q. Protective effects of catechin on cerebral ischemia-reperfusion injury in rats and its mechanism [J]. Chinese Pharmacological Bulletin, 2010, 26(2): 255-257.
    [31]
    徐先祥. 儿茶素的药理作用研究综述[J]. 郑州轻工业学院学报(自然科学版),2012,27(4):60−64. [XU X X. Review of research on pharmacological effects of catechins[J]. Journal of Zhengzhou University of Light Industry,2012,27(4):60−64.

    XU X X. Review of research on pharmacological effects of catechins [J]. Journal of Zhengzhou University of Light Industry, 2012, 27(4): 60–64.
    [32]
    GAO X M, PU J X, XIAO W L, et al. Kadcoccilactones K-R, triterpenoids from Kadsura coccinea[J]. Tetrahedron,2008,64:11673−11679. doi: 10.1016/j.tet.2008.10.011
    [33]
    LIANG C Q, SHI Y M, LI X Y, et al. Kadcotriones A-C: tricyclic triterpenoids from Kadsura coccinea[J]. Journal of Natural Products,2013,74:2350−2354.
    [34]
    LIANG C Q, SHI Y M, LUO R H, et al. Kadcoccitones A and B, two new 6/6/5/5-fused tetracyclic triterpenoids from Kadsura coccinea[J]. Organic Letters,2012,14:6362−6365. doi: 10.1021/ol303168y
    [35]
    HU Z X, SHI Y M, WANG W G, et al. Kadcoccinones A–F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea[J]. Organic Letters,2015,17:4616−4619. doi: 10.1021/acs.orglett.5b02360
  • Related Articles

    [1]REN Yimeng, GAO Yuan, KONG Shuhua, ZHAO Jinwen, REN Dandan, MA Yichao, LIU Shu, HE Yunhai, WANG Qiukuan. Research Progress on Extraction, Separation and Purification Methods, Structural Characterization and Biological Activity of Natural Polysaccharide-polyphenol Conjugates[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060022
    [2]SHAN Rong, XU Xiaoyi, YIN Yongkui, GAO Xiaoyan, ZHAO Qingxue, SONG Gaochen. Research Progress in the Preparation and Biological Activity of Polysaccharide Nano-selenium[J]. Science and Technology of Food Industry, 2024, 45(18): 376-383. DOI: 10.13386/j.issn1002-0306.2023100109
    [3]YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217
    [4]WEI Bingqi, GAO Xiaoyu, LIU Yanxin, WANG Yicui. Research Progress on Structure, Biological Activity and Product Development of Ziziphus jujuba Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(12): 1-9. DOI: 10.13386/j.issn1002-0306.2023080051
    [5]DAI Shuang, LI Linlin, YIN Wei, WANG Le, WANG Yuwei, LIANG Jian. Research Progress on Extraction, Structure Determination, Chemical Modification and Biological Activity of Garlic Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(1): 9-17. DOI: 10.13386/j.issn1002-0306.2023060161
    [6]YANG Yi, ZHAO Yuan, SUN Jilu, SHAO Juanjuan. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468-479. DOI: 10.13386/j.issn1002-0306.2022070383
    [7]HUANG Min, MIAO Jingnan, WANG Yong, QIU Junqiang, LI Haixia. Research Progress on Extraction, Chemical Structure and Biological Activities of Oudemansiella Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(11): 434-439. DOI: 10.13386/j.issn1002-0306.2021070107
    [8]ZHU Rongjing, CHEN Xuefeng, LIU Huan, MENG Guangyan, DANG Yue. Research Progress on Extraction, Purification and Biological Activities of Nostoc flagelliforme Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(22): 423-432. DOI: 10.13386/j.issn1002-0306.2020090199
    [9]Yongshuai JING, Yuwei ZHANG, Jiaying LI, Xinru YUAN, Yuguang ZHENG, Lanfang WU, Danshen ZHANG. Research Progress of Synthesis Methods, Structural Characteristics and Biological Activities of Selenium Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(7): 374-381. DOI: 10.13386/j.issn1002-0306.2020050188
    [10]ZHANG Jin-yu, WANG Feng, SU Xiao-jun, LI Qing-ming, GUO Shi-yin, GUO Hong-ying, DENG Chao-yang, SHI Zhu, TANG Lan-fang. Research Progress on Structure,Biological Activity and Physicochemical Properties of Yam Polysaccharides[J]. Science and Technology of Food Industry, 2019, 40(12): 364-368. DOI: 10.13386/j.issn1002-0306.2019.12.059
  • Cited by

    Periodical cited type(20)

    1. 陆源添,刘迪. 杨树桑黄与紫孢侧耳共培养胞内多糖提取工艺优化及抗氧化活性分析. 食品工业科技. 2025(02): 208-217 . 本站查看
    2. 李明櫆,王梦娜,李占峰,彭帮柱. 基于加热回流法的香菇多糖提取工艺优化及其产品研发. 食品科技. 2024(03): 210-216 .
    3. 闫帅. 玫瑰多糖的提取纯化、结构表征、生物活性及应用研究进展. 食品与机械. 2024(10): 236-242 .
    4. 李臣亮,蔡雪莹,杨安慧. 黑虎掌菌的化学成分及其药理作用研究进展. 生物技术通报. 2024(11): 24-33 .
    5. 王晓岩,李刚,孔凡丽. 多脂鳞伞多糖对H22荷瘤小鼠抗肿瘤作用. 食用菌学报. 2023(01): 45-52 .
    6. 戴玉成. 中国多孔菌驯化栽培研究进展. 菌物研究. 2023(Z1): 151-156 .
    7. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化. 湖南农业科学. 2023(02): 1-6 .
    8. 张璐,李翘楚,王增利,丁强,王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化. 浙江农业学报. 2023(05): 1154-1160 .
    9. 桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
    10. 郑伊琦,张安强,张小军,梅光明,何鹏飞. 响应面优化猪苓菌核多糖超声辅助提取工艺及抗氧化活性分析. 食品工业科技. 2023(16): 255-263 . 本站查看
    11. 杨敏,奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究. 湖北农业科学. 2023(08): 160-166 .
    12. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化(英文). Agricultural Science & Technology. 2023(03): 54-62 .
    13. 宋鹏炜,孙畅,丁强,王鸿磊. 裂褶菌高产胞外多糖发酵培养基优化及生物活性研究. 饲料研究. 2023(22): 86-91 .
    14. 李静,李雪婷,刘人鸣,王羽,朴京培,郭海勇. 榆耳主要活性成分及其生物学功能研究进展. 食品研究与开发. 2023(24): 193-200 .
    15. 秦瑞博,成玉飞,陈嫒,文明佳,何嘉,杜昕. 表面活性剂辅助酶法提取茶树菇多糖工艺研究. 生物化工. 2023(06): 80-84+101 .
    16. 杨彤,孙静,郝宸,王建瑞,刘宇. 盐胁迫下六妹羊肚菌菌丝体的理化性状. 食品与发酵工业. 2022(18): 162-167 .
    17. 冯小飞,朗丹,寸孟人,胡珊苑,余浪,杨斌. 2株野生木耳液体培养方法优化及其胞内多糖的抗氧化活性分析. 西南林业大学学报(自然科学). 2022(05): 96-103 .
    18. 莫翠园,盛丽,刘若凡,郝梅,马爱民. 虎奶菇多糖提取工艺优化、结构鉴定及抗氧化活性研究. 食品科技. 2022(09): 156-163 .
    19. 李兴恺,张耀根,姚皓昱,丁一飞,王诗雨,王燕玲,孙涛,雷鹏,徐虹,王瑞. 毛韧革菌胞外多糖的结构表征、抗氧化活性研究及发酵条件优化. 食品与发酵工业. 2022(21): 36-41 .
    20. 梅承翰,张丽英,张冰梅,陈蓓蓓. 红托竹荪多糖组分和生物活性研究进展. 中国食用菌. 2022(11): 8-11+17 .

    Other cited types(20)

Catalog

    Article Metrics

    Article views (222) PDF downloads (22) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return