Citation: | JIANG Hao, SUN Tao, YAO Haoyu, et al. Research Progress of Edible Fungal Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(12): 447−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070006. |
[1] |
XIE J P, YUN H, DONG H G, et al. Simultaneous extraction, separation and purification of microbial genomic DNA and total RNA from acidic habitat samples[J]. Analytical Methods,2015,7(3):909−917. doi: 10.1039/C4AY01608D
|
[2] |
PARNIAKOV O, LEBOVKA N I, VAN HECKE E, et al. Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2014,7(1):174−183. doi: 10.1007/s11947-013-1059-y
|
[3] |
ZHAO Y M, SONG J H, WANG J, et al. Optimization of cellulase‐assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Journal of the Science of Food and Agriculture,2016,96(13):4484−4491. doi: 10.1002/jsfa.7662
|
[4] |
RUTHES A C, SMIDERLE F R, IACOMINI M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects[J]. Carbohydrate Polymers,2016,136:358−375. doi: 10.1016/j.carbpol.2015.08.061
|
[5] |
WANG Q, WANG F, XU Z, et al. Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation[J]. Molecules,2017,22(6):955. doi: 10.3390/molecules22060955
|
[6] |
TABARSA M, YOU S G, YELITHAO K, et al. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum[J]. Carbohydrate Polymers,2020,230:115636. doi: 10.1016/j.carbpol.2019.115636
|
[7] |
LI Q Z, WU D, ZHOU S, et al. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages[J]. Carbohydrate Polymers,2016,144:196−204. doi: 10.1016/j.carbpol.2016.02.051
|
[8] |
ZHANG Y, ZENG Y, MEN Y, et al. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae[J]. International Journal of Biological Macromolecules,2018,115:978−984. doi: 10.1016/j.ijbiomac.2018.04.145
|
[9] |
姜艳红, 张玲帆, 吕瑛, 等. 杏鲍菇多糖PEP-2的结构表征及其对肝癌细胞HepG-2抑制作用的研究[J]. 食品工业科技,2016,37(19):111−116. [JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry,2016,37(19):111−116.
JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry, 2016, 37(19): 111-116.
|
[10] |
WEN L, GAO Q, MA C, et al. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging[J]. Journal of Functional Foods,2016,20:400−410. doi: 10.1016/j.jff.2015.11.014
|
[11] |
LI Q, WANG W, ZHU Y, et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa[J]. Carbohydrate Polymers,2017,161:42−52. doi: 10.1016/j.carbpol.2016.12.041
|
[12] |
BARBOSA J R, DOS SANTOS FREITAS M M, DA SILVA MARTINS L H, et al. Polysaccharides of mushroom Pleurotus spp. : New extraction techniques, biological activities and development of new technologies[J]. Carbohydrate Polymers,2020,229:115550. doi: 10.1016/j.carbpol.2019.115550
|
[13] |
RUTHES A C, SMIDERLE F R, IACOMINI M. D-glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches[J]. Carbohydrate Polymers,2015,117:753−761. doi: 10.1016/j.carbpol.2014.10.051
|
[14] |
ZHANG M, CUI S W, CHEUNG P C K, et al. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity[J]. Trends in Food Science & Technology,2007,18(1):4−19.
|
[15] |
MORALES D, SMIDERLE F R, VILLALVA M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes[J]. Journal of Functional Foods,2019,60:103446. doi: 10.1016/j.jff.2019.103446
|
[16] |
SU C H, LAI M N, NG L T. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa[J]. Food Chemistry,2017,220:400−405. doi: 10.1016/j.foodchem.2016.09.181
|
[17] |
WANG Z B, PEI J J, MA H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014,109:49−55. doi: 10.1016/j.carbpol.2014.03.057
|
[18] |
SERMWITTAYAWONG D, PATNINAN K, PHOTHIPHIPHIT S, et al. Purification, characterization, and biological activities of purified polysaccharides extracted from the Gray oyster mushroom [Pleurotus sajor-caju (Fr.) Sing.][J]. Journal of Food Biochemistry,2018,42(5):e12606. doi: 10.1111/jfbc.12606
|
[19] |
BAEVA E, BLEHA R, LAVROVA E, et al. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization[J]. Molecules,2019,24(15):2740. doi: 10.3390/molecules24152740
|
[20] |
SZWENGIEL A, STACHOWIAK B. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms[J]. Carbohydrate Polymers,2016,146:310−319. doi: 10.1016/j.carbpol.2016.03.015
|
[21] |
CHEN X Y, JI H Y, XU X M, et al. Optimization of polysaccharide extraction process from Grifola frondosa and its antioxidant and anti-tumor research[J]. Journal of Food Measurement and Characterization,2019,13(1):144−153. doi: 10.1007/s11694-018-9927-9
|
[22] |
ZHANG L, WANG M. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus)[J]. Food and Bioproducts Processing,2016,100:464−468. doi: 10.1016/j.fbp.2016.09.007
|
[23] |
GIL-RAMÍREZ A, SMIDERLE F R, MORALES D, et al. Strengths and weaknesses of the aniline-blue method used to test mushroom (1→ 3)-β-d-glucans obtained by microwave-assisted extractions[J]. Carbohydrate Polymers,2019,217:135−143. doi: 10.1016/j.carbpol.2019.04.051
|
[24] |
WANG N, ZHANG Y, WANG X, et al. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods[J]. International Journal of Biological Macromolecules,2016,83:103−110. doi: 10.1016/j.ijbiomac.2015.11.032
|
[25] |
LI L, YANG X, PAN L, et al. Comparing three methods of extraction of Auricularia auricula polysaccharides[J]. Current Topics in Nutraceutical Research,2019,17(1):7−11.
|
[26] |
FAN Y N, WU X Y, ZHANG M, et al. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa[J]. International Journal of Biological Macromolecules,2011,48(5):798−803. doi: 10.1016/j.ijbiomac.2011.03.013
|
[27] |
HUAMÁN-LEANDRO L R, GONZÁLEZ-MUÑOZ M J, FERNÁNDEZ-DE-ANA C, et al. Autohydrolysis of Lentinus edodes for obtaining extracts with antiradical properties[J]. Foods,2020,9(1):74. doi: 10.3390/foods9010074
|
[28] |
RODRÍGUEZ-SEOANE P, DÍAZ-REINOSO B, GONZÁLEZ-MUÑOZ M J, et al. Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii[J]. LWT-Food Science and Technology,2019,101:774−782. doi: 10.1016/j.lwt.2018.11.062
|
[29] |
WANG Y F, JIA J X, REN X J, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules,2018,120:1760−1769. doi: 10.1016/j.ijbiomac.2018.09.209
|
[30] |
WU Z W, ZHANG M X, XIE M H, et al. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1[J]. Carbohydrate Polymers,2016,137:541−548. doi: 10.1016/j.carbpol.2015.11.010
|
[31] |
GUO X, ZOU X, SUN M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius[J]. Carbohydrate Polymers,2010,80(2):344−349. doi: 10.1016/j.carbpol.2009.11.028
|
[32] |
LIU Y, ZHOU Y, LIU M, et al. Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus[J]. International Journal of Biological Macromolecules,2018,112:326−332. doi: 10.1016/j.ijbiomac.2018.01.132
|
[33] |
ZHANG J X, WEN C T, GU J Y, et al. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes[J]. International Journal of Biological Macromolecules,2019,123:1002−1011. doi: 10.1016/j.ijbiomac.2018.11.194
|
[34] |
ZHU M, NIE P, LIANG Y K, et al. Optimizing conditions of polysaccharide extraction from Shiitake mushroom using response surface methodology and its regulating lipid metabolism[J]. Carbohydrate Polymers,2013,95(2):644−648. doi: 10.1016/j.carbpol.2013.03.035
|
[35] |
XUE D N, FARID M M. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus)[J]. Innovative Food Science & Emerging Technologies,2015,29:178−186.
|
[36] |
YI Y, XU W, WANG H X, et al. Natural polysaccharides experience physiochemical and functional changes during preparation: A review[J]. Carbohydrate Polymers,2020,234:115896. doi: 10.1016/j.carbpol.2020.115896
|
[37] |
KLAUS A, KOZARSKI M, NIKSIC M, et al. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune[J]. LWT-Food Science and Technology,2011,44(10):2005−2011. doi: 10.1016/j.lwt.2011.05.010
|
[38] |
KE L Q. Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment[J]. Journal of Food Processing and Preservation,2015,39(3):254−259. doi: 10.1111/jfpp.12228
|
[39] |
ALZORQI I, SUDHEER S, LU T J, et al. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity[J]. Ultrasonics Sonochemistry,2017,35:531−540. doi: 10.1016/j.ultsonch.2016.04.017
|
[40] |
LI X Y, WANG L. Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides[J]. International Journal of Biological Macromolecules,2016,83:270−276. doi: 10.1016/j.ijbiomac.2015.11.060
|
[41] |
MARIĆ M, GRASSINO A N, ZHU Z, et al. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction[J]. Trends in Food Science & Technology,2018,76:28−37.
|
[42] |
XU N, SUN Y H, GUO X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing and Preservation,2018,42(2):e13423. doi: 10.1111/jfpp.13423
|
[43] |
YOU Q H, YIN X L, ZHANG S N, et al. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Carbohydrate Polymers,2014,99:1−10. doi: 10.1016/j.carbpol.2013.07.088
|
[44] |
YU G, YUE C, ZANG X, et al. Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom[J]. Czech Journal of Food Sciences,2019,37(1):51−56. doi: 10.17221/182/2018-CJFS
|
[45] |
YUAN Y, LIU Y, LIU M D, et al. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa[J]. Saudi Pharmaceutical Journal,2017,25(4):523−530. doi: 10.1016/j.jsps.2017.04.018
|
[46] |
BISHOP K S, KAO C H J, XU Y, et al. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals[J]. Phytochemistry,2015,114:56−65. doi: 10.1016/j.phytochem.2015.02.015
|
[47] |
POKHREL C P, OHGA S. Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes[J]. Food Chemistry,2007,105(2):641−646. doi: 10.1016/j.foodchem.2007.04.033
|
[48] |
KIM S W, HWANG H J, XU C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738[J]. Journal of Applied Microbiology,2003,94(1):120−126. doi: 10.1046/j.1365-2672.2003.01754.x
|
[49] |
SHU C H, HSU H J. Effects of sodium chloride on the production of bioactive exopolysaccharides in submerged cultures of Phellinus linteus[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,2008,83(5):618−624.
|
[50] |
XU C, GENG L, ZHANG W. Production of extracellular polysaccharides by the medicinal mushroom Trametes trogii (higher basidiomycetes) in stirred-tank and airlift reactors[J]. International Journal of Medicinal Mushrooms,2013,15(2):183−189. doi: 10.1615/IntJMedMushr.v15.i2.70
|
[51] |
SHIH I L, CHOU B W, CHEN C C, et al. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa[J]. Bioresource Technology,2008,99(4):785−793. doi: 10.1016/j.biortech.2007.01.030
|
[52] |
PENG L, LI J, LIU Y, et al. Effects of mixed carbon sources on galactose and mannose content of exopolysaccharides and related enzyme activities in Ganoderma lucidum[J]. Rsc Advances,2016,6(45):39284−39291. doi: 10.1039/C6RA04798J
|
[53] |
XU J W, JI S L, LI H J, et al. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene[J]. Bioprocess and Biosystems Engineering,2015,38(2):399−405. doi: 10.1007/s00449-014-1279-1
|
[54] |
LI M, CHEN T, GAO T, et al. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose[J]. Fungal Genetics and Biology,2015,82:251−263. doi: 10.1016/j.fgb.2015.07.012
|
[55] |
PENG L, QIAO S, XU Z, et al. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes[J]. Carbohydrate Polymers,2015,133:104−109. doi: 10.1016/j.carbpol.2015.07.014
|
[56] |
GONG P, WANG S, LIU M, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review[J]. Carbohydrate Research,2020,494:108037. doi: 10.1016/j.carres.2020.108037
|
[57] |
FOGLI S, PORTA C, DEL RE M, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: A comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs[J]. Cancer Treatment Reviews,2020,84:101966. doi: 10.1016/j.ctrv.2020.101966
|
[58] |
ZHANG Y, LI S, WANG X, et al. Advances in lentinan: Isolation, structure, chain conformation and bioactivities[J]. Food Hydrocolloids,2011,25(2):196−206. doi: 10.1016/j.foodhyd.2010.02.001
|
[59] |
ZHANG S, NIE S, HUANG D, et al. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1581−1589. doi: 10.1021/jf4053012
|
[60] |
LI S, GAO A, DONG S, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta[J]. International Journal of Biological Macromolecules,2017,96:26−34. doi: 10.1016/j.ijbiomac.2016.12.007
|
[61] |
YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review[J]. Trends in Food Science & Technology,2019,92:94−110.
|
[62] |
CUI Y, YAN H, ZHANG X. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity[J]. Bioscience, Biotechnology, and Biochemistry,2015,79(10):1619−1623. doi: 10.1080/09168451.2015.1044930
|
[63] |
MALLICK S K, MAITI S, BHUTIA S K, et al. Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus[J]. Journal of Medicinal Food,2010,13(3):665−672. doi: 10.1089/jmf.2009.1300
|
[64] |
ZHANG X, QI C, GUO Y, et al. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models[J]. Carbohydrate Polymers,2016,149:186−206. doi: 10.1016/j.carbpol.2016.04.097
|
[65] |
PERERA N, YANG F L, CHERN J, et al. Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae[J]. Chemical Communications,2018,54(51):6995−6998. doi: 10.1039/C7CC09927D
|
[66] |
KOZARSKI M, KLAUS A, JAKOVLJEVIC D, et al. Antioxidants of edible mushrooms[J]. Molecules,2015,20(10):19489−19525. doi: 10.3390/molecules201019489
|
[67] |
SU Y, LI L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales[J]. Carbohydrate Polymers,2020,229:115407. doi: 10.1016/j.carbpol.2019.115407
|
[68] |
KHATUA S, ACHARYA K. Alkaline extractive crude polysaccharide from Russula senecis possesses antioxidant potential and stimulates innate immunity response[J]. Journal of Pharmacy and Pharmacology,2017,69(12):1817−1828. doi: 10.1111/jphp.12813
|
[69] |
JING H, LI J, ZHANG J, et al. The antioxidative and anti-aging effects of acidic-and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing[J]. International Journal of Biological Macromolecules,2018,106:1270−1278. doi: 10.1016/j.ijbiomac.2017.08.138
|
[70] |
TENG J F, LEE C H, HSU T H, et al. Potential activities and mechanisms of extracellular polysaccharopeptides from fermented Trametes versicolor on regulating glucose homeostasis in insulin-resistant HepG2 cells[J]. PloS One,2018,13(7):e0201131. doi: 10.1371/journal.pone.0201131
|
[71] |
MA H T, HSIEH J F, CHEN S T. Anti-diabetic effects of Ganoderma lucidum[J]. Phytochemistry,2015,114:109−113. doi: 10.1016/j.phytochem.2015.02.017
|
[72] |
YAMAÇ M, ZEYTINOGLU M, SENTURK H, et al. Effects of black hoof medicinal mushroom, Phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats[J]. International Journal of Medicinal Mushrooms,2016,18(4):301−311. doi: 10.1615/IntJMedMushrooms.v18.i4.30
|
[73] |
ZHANG C, LI J, HU C, et al. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice[J]. Scientific Reports,2017,7(1):1−13. doi: 10.1038/s41598-016-0028-x
|
[74] |
XIAO C, WU Q, ZHANG J, et al. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice[J]. Journal of Ethnopharmacology,2017,196:47−57. doi: 10.1016/j.jep.2016.11.044
|
[75] |
REN Z, LI J, SONG X, et al. The regulation of inflammation and oxidative status against lung injury of residue polysaccharides by Lentinula edodes[J]. International Journal of Biological Macromolecules,2018,106:185−192. doi: 10.1016/j.ijbiomac.2017.08.008
|
[76] |
REN Y, GENG Y, DU Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J]. The Journal of Nutritional Biochemistry,2018,57:67−76. doi: 10.1016/j.jnutbio.2018.03.005
|
[77] |
XU X, YANG J, NING Z, et al. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota[J]. Food & Function,2015,6(8):2653−2663.
|
[78] |
LI W J, NIE S P, PENG X P, et al. Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice[J]. Journal of Agricultural and Food Chemistry,2012,60(6):1413−1418. doi: 10.1021/jf204748a
|
[79] |
PAN W J, DING Q Y, WANG Y, et al. A bioactive polysaccharide TLH-3 isolated from Tricholoma lobayense protects against oxidative stress-induced premature senescence in cells and mice[J]. Journal of Functional Foods,2018,42:159−170. doi: 10.1016/j.jff.2017.12.070
|
[80] |
PENG X B, LI Q, OU L N, et al. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice[J]. International Journal of Biological Macromolecules,2010,47(2):304−307. doi: 10.1016/j.ijbiomac.2010.03.018
|
[1] | REN Yimeng, GAO Yuan, KONG Shuhua, ZHAO Jinwen, REN Dandan, MA Yichao, LIU Shu, HE Yunhai, WANG Qiukuan. Research Progress on Extraction, Separation and Purification Methods, Structural Characterization and Biological Activity of Natural Polysaccharide-polyphenol Conjugates[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060022 |
[2] | SHAN Rong, XU Xiaoyi, YIN Yongkui, GAO Xiaoyan, ZHAO Qingxue, SONG Gaochen. Research Progress in the Preparation and Biological Activity of Polysaccharide Nano-selenium[J]. Science and Technology of Food Industry, 2024, 45(18): 376-383. DOI: 10.13386/j.issn1002-0306.2023100109 |
[3] | YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217 |
[4] | WEI Bingqi, GAO Xiaoyu, LIU Yanxin, WANG Yicui. Research Progress on Structure, Biological Activity and Product Development of Ziziphus jujuba Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(12): 1-9. DOI: 10.13386/j.issn1002-0306.2023080051 |
[5] | DAI Shuang, LI Linlin, YIN Wei, WANG Le, WANG Yuwei, LIANG Jian. Research Progress on Extraction, Structure Determination, Chemical Modification and Biological Activity of Garlic Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(1): 9-17. DOI: 10.13386/j.issn1002-0306.2023060161 |
[6] | YANG Yi, ZHAO Yuan, SUN Jilu, SHAO Juanjuan. Research Progress on Chemical Modification Methods of Polysaccharides and Their Biological Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 468-479. DOI: 10.13386/j.issn1002-0306.2022070383 |
[7] | HUANG Min, MIAO Jingnan, WANG Yong, QIU Junqiang, LI Haixia. Research Progress on Extraction, Chemical Structure and Biological Activities of Oudemansiella Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(11): 434-439. DOI: 10.13386/j.issn1002-0306.2021070107 |
[8] | ZHU Rongjing, CHEN Xuefeng, LIU Huan, MENG Guangyan, DANG Yue. Research Progress on Extraction, Purification and Biological Activities of Nostoc flagelliforme Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(22): 423-432. DOI: 10.13386/j.issn1002-0306.2020090199 |
[9] | Yongshuai JING, Yuwei ZHANG, Jiaying LI, Xinru YUAN, Yuguang ZHENG, Lanfang WU, Danshen ZHANG. Research Progress of Synthesis Methods, Structural Characteristics and Biological Activities of Selenium Polysaccharides[J]. Science and Technology of Food Industry, 2021, 42(7): 374-381. DOI: 10.13386/j.issn1002-0306.2020050188 |
[10] | ZHANG Jin-yu, WANG Feng, SU Xiao-jun, LI Qing-ming, GUO Shi-yin, GUO Hong-ying, DENG Chao-yang, SHI Zhu, TANG Lan-fang. Research Progress on Structure,Biological Activity and Physicochemical Properties of Yam Polysaccharides[J]. Science and Technology of Food Industry, 2019, 40(12): 364-368. DOI: 10.13386/j.issn1002-0306.2019.12.059 |
1. |
陆源添,刘迪. 杨树桑黄与紫孢侧耳共培养胞内多糖提取工艺优化及抗氧化活性分析. 食品工业科技. 2025(02): 208-217 .
![]() | |
2. |
李明櫆,王梦娜,李占峰,彭帮柱. 基于加热回流法的香菇多糖提取工艺优化及其产品研发. 食品科技. 2024(03): 210-216 .
![]() | |
3. |
闫帅. 玫瑰多糖的提取纯化、结构表征、生物活性及应用研究进展. 食品与机械. 2024(10): 236-242 .
![]() | |
4. |
李臣亮,蔡雪莹,杨安慧. 黑虎掌菌的化学成分及其药理作用研究进展. 生物技术通报. 2024(11): 24-33 .
![]() | |
5. |
王晓岩,李刚,孔凡丽. 多脂鳞伞多糖对H22荷瘤小鼠抗肿瘤作用. 食用菌学报. 2023(01): 45-52 .
![]() | |
6. |
戴玉成. 中国多孔菌驯化栽培研究进展. 菌物研究. 2023(Z1): 151-156 .
![]() | |
7. |
王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化. 湖南农业科学. 2023(02): 1-6 .
![]() | |
8. |
张璐,李翘楚,王增利,丁强,王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化. 浙江农业学报. 2023(05): 1154-1160 .
![]() | |
9. |
桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
![]() | |
10. |
郑伊琦,张安强,张小军,梅光明,何鹏飞. 响应面优化猪苓菌核多糖超声辅助提取工艺及抗氧化活性分析. 食品工业科技. 2023(16): 255-263 .
![]() | |
11. |
杨敏,奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究. 湖北农业科学. 2023(08): 160-166 .
![]() | |
12. |
王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化(英文). Agricultural Science & Technology. 2023(03): 54-62 .
![]() | |
13. |
宋鹏炜,孙畅,丁强,王鸿磊. 裂褶菌高产胞外多糖发酵培养基优化及生物活性研究. 饲料研究. 2023(22): 86-91 .
![]() | |
14. |
李静,李雪婷,刘人鸣,王羽,朴京培,郭海勇. 榆耳主要活性成分及其生物学功能研究进展. 食品研究与开发. 2023(24): 193-200 .
![]() | |
15. |
秦瑞博,成玉飞,陈嫒,文明佳,何嘉,杜昕. 表面活性剂辅助酶法提取茶树菇多糖工艺研究. 生物化工. 2023(06): 80-84+101 .
![]() | |
16. |
杨彤,孙静,郝宸,王建瑞,刘宇. 盐胁迫下六妹羊肚菌菌丝体的理化性状. 食品与发酵工业. 2022(18): 162-167 .
![]() | |
17. |
冯小飞,朗丹,寸孟人,胡珊苑,余浪,杨斌. 2株野生木耳液体培养方法优化及其胞内多糖的抗氧化活性分析. 西南林业大学学报(自然科学). 2022(05): 96-103 .
![]() | |
18. |
莫翠园,盛丽,刘若凡,郝梅,马爱民. 虎奶菇多糖提取工艺优化、结构鉴定及抗氧化活性研究. 食品科技. 2022(09): 156-163 .
![]() | |
19. |
李兴恺,张耀根,姚皓昱,丁一飞,王诗雨,王燕玲,孙涛,雷鹏,徐虹,王瑞. 毛韧革菌胞外多糖的结构表征、抗氧化活性研究及发酵条件优化. 食品与发酵工业. 2022(21): 36-41 .
![]() | |
20. |
梅承翰,张丽英,张冰梅,陈蓓蓓. 红托竹荪多糖组分和生物活性研究进展. 中国食用菌. 2022(11): 8-11+17 .
![]() |