CHENG Jing, CHEN Dawei, QU Min, et al. Study on the Optimization of the Preparation Process of Walnut Peptide and the Improvement of Memory Function[J]. Science and Technology of Food Industry, 2021, 42(11): 135−141. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040288.
Citation: CHENG Jing, CHEN Dawei, QU Min, et al. Study on the Optimization of the Preparation Process of Walnut Peptide and the Improvement of Memory Function[J]. Science and Technology of Food Industry, 2021, 42(11): 135−141. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040288.

Study on the Optimization of the Preparation Process of Walnut Peptide and the Improvement of Memory Function

More Information
  • Received Date: April 26, 2021
  • Available Online: May 10, 2021
  • Objective: Taking walnut meal as raw material, the preparation process optimization of walnut peptide and its improvement of memory function activity were discussed. Methods: The preparation process of walnut peptide was optimized by single factor experiment and orthogonal experiment. At the same time, the water maze test, step-down test and passive avoidance test were used to evaluate the effect of walnut peptide on memory function. Female mice were divided into low, medium and high dose groups and blank control group. The intragastric administration doses were 1.33, 2.66 and 3.99 g/kg BW, respectively, and the control group was treated with distilled water. The mice were intragastrically administered for 30 days. The experiment was started after the last intragastric administration for 24 h. Results: The optimal enzymatic preparation process was as follows: citric acid concentration of pretreatment was 2%, alkaline protease dosage was 4%, solid-liquid ratio was 1:15, and enzymatic hydrolysis time was 4 h. Under these conditions, the yield of walnut peptide was 33.5% and the clarity was good. In the water maze test, the number of animals reaching the end of the middle dose group was significantly higher than that of the blank control group (P<0.05). In the passive avoidance test, the latency time of the high dose group was significantly prolonged, and the number of errors and error response rate were significantly reduced (P<0.01). Walnut peptide had the function of improving memory. Conclusion: In this study, the product clarity was improved while ensuring the quality of walnut peptide products.Meanwhile, the results of functional studies showed that walnut peptide could improve the memory from both active and passive avoidance.
  • [1]
    刘润民, 魏冰, 宁德鲁, 等. 核桃肽生产工艺的探讨[J]. 粮食与食品工业,2019,26(3):38−40. doi: 10.3969/j.issn.1672-5026.2019.03.011
    [2]
    吕名蕊, 史宣明, 张骊, 等. 核桃肽功能特性及制备工艺研究进展[J]. 中国油脂,2013,38(5):34−38. doi: 10.3969/j.issn.1003-7969.2013.05.009
    [3]
    付苗苗. 核桃的营养保健功能及药用价值研究进展[J]. 中国食物与营养,2014,20(10):74−76. doi: 10.3969/j.issn.1006-9577.2014.10.020
    [4]
    王端, 周鸿翔, 王晓丹, 等. 响应面法优化酶解核桃多肽提取工艺[J]. 食品研究与开发,2015,36(15):19−21. doi: 10.3969/j.issn.1005-6521.2015.15.006
    [5]
    虎海防, 赵晓燕, 孙雅丽, 等. 酶法辅助反胶束前萃取核桃蛋白的研究[J]. 食品科学,2015,40(12):190−195.
    [6]
    高瑞雄, 闫巧珍, 岳珍珍, 等. 冷榨核桃粕液态发酵制备核桃多肽[J]. 食品科学,2016,37(19):190−196. doi: 10.7506/spkx1002-6630-201619032
    [7]
    邸红艳, 马海乐, 王洋, 等. 超声辅助提取核桃蛋白的工艺研究[J]. 现代食品科技,2019,35(7):164−172.
    [8]
    刘传水, 太志刚, 冯四全, 等. 核桃种皮的化学成分研究[J]. 中国中药杂志,2012,37(10):1417−1421.
    [9]
    余少华, 李亚平, 张娜, 等. 新疆薄皮核桃果仁去皮方法的研究[J]. 农产品加工,2008(12):74−76.
    [10]
    赵聪. 核桃种皮多酚的提纯鉴定及抗氧化活性的研究[D]. 天津: 天津科技大学, 2016.
    [11]
    林燕, 陈计峦, 吴继红, 等. 酶法制备核桃多肽研究进展[J]. 粮食与油脂,2009(1):46−48. doi: 10.3969/j.issn.1008-9578.2009.01.016
    [12]
    全国粮油标准化技术委员会. GB/T22492-2008 大豆肽粉[S]. 北京: 中国标准出版社, 2008.
    [13]
    中国日用化学工业协会明胶分会. QB2732-2005水解胶原蛋白[S]. 北京: 中华人民共和国国家发展和改革委员会, 2005.
    [14]
    徐珊珊. 小麦面筋蛋白美拉德肽的制备及风味特性研究[D]. 无锡: 江南大学, 2018.
    [15]
    中华人民共和国卫生部. 保健食品检验与评价技术规范(2003版)[S]. 2003, 第二部分: 58-68.
    [16]
    Gredemann C, Eicken C, Krebs B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper protein[J]. Accounts of chemical Research,2002,35(3):183−191. doi: 10.1021/ar990019a
    [17]
    Selvearajan E, Veena R, Manoj Kumar N. Polyphenol oxidas, beyound enzyme browning[J]. Microbial Bioprospecting for Sustainable Development,2018,2018:203−222.
    [18]
    Queiroz C, Mendes Lopes M L, Fialho E, et al. Polyphenol oxidase: Characteristics and mechanisms of browning control[J]. Food Reviews International,2008,24(4):361−375. doi: 10.1080/87559120802089332
    [19]
    Panadare D C, Rathod U K. Extraction of peroxidase from bitter gourd(Momordica charantia) by three phase partitioning with dimethyl carbonate(DMC) as organic phase[J]. Process Biochemistry,2017,61:195−201. doi: 10.1016/j.procbio.2017.06.028
    [20]
    Chaiwut p, Pintathong P, Rawakuen S. Extraction and three-phase partitioning behavior of proteases from papaya peels[J]. Process Biochemistry,2010,45(7):1172−1175. doi: 10.1016/j.procbio.2010.03.019
    [21]
    Palma Orozco G, Marrufo Hernandez N A, Tobias I, et al. Purification and biochemical characterization of polyphenol oxidase from soursop(Annona muricata L.)and its inactivation by microwave and ultrasound treatments[J]. Journal of Food Biochemistry,2019,43(3):e12770. doi: 10.1111/jfbc.12770
    [22]
    Benaceur F, Gouzi H, Meddah B, et al. Purification and characterization of catechol oxidase from Tadela(Phoenix dactylifera L.) date fruit[J]. International Journal of Biological Macromolecules,2019,125:1248−1256. doi: 10.1016/j.ijbiomac.2018.09.101
    [23]
    Mishra B B, Gautam S, Sharma A. Purification and characterisation of polyphenol oxidase(PPO)from eggplant(Solanum melongena)[J]. Food chemistry,2012,134(4):1855−1861. doi: 10.1016/j.foodchem.2012.03.098
    [24]
    徐淑云, 卞如濂, 陈修. 药理实验方法(第三版)[M]. 北京: 人民卫生出版社, 2001: 826-828.
    [25]
    樊永波, 陶兴无, 马琳, 等. 核桃饼粕对大鼠学习记忆和抗氧化功能的影响[J]. 食品科学,2013,34:323−326. doi: 10.7506/spkx1002-6630-201317068
    [26]
    Kant D, Tripathi S, Qureshi MF, et al. The effect of glial glutanine synthetase inhibition on recognition and temporal memories in the rat[J]. Neurosci Lett,2014,560:98−102. doi: 10.1016/j.neulet.2013.12.033
    [27]
    Topo E, SoricelliA, Di Maio A, et al. Evidence for the involvement of D-aspartic acid in learning and memory of rat[J]. Amino Acids,2010,38:1561−1569. doi: 10.1007/s00726-009-0369-x
    [28]
    赵海峰, 李学敏, 肖荣. 核桃提取物对改善小鼠学习和记忆作用的实验研究[J]. 山西医科大学学报,2004,35(1):20−22. doi: 10.3969/j.issn.1007-6611.2004.01.009
    [29]
    杜倩, 乌兰, 刘睿, 等. 核桃肽对幼年小鼠学习记忆能力的影响[J]. 中国生育健康杂志,2017,28(6):538−543. doi: 10.3969/j.issn.1671-878X.2017.06.009
  • Related Articles

    [1]LI Jinting, QIAN Xinyi, YONG Yidan, WU Mengmeng, SUN Huakai, WANG Yanan, CHEN Anhui, SHAO Ying, NI Zaizhong. Optimization of Enzymatic-assisted Aqueous Two-phase Extraction Conditions of Polysaccharides from Cordyceps cicadae and Analysis of Its Antioxidant, Hypoglycemic and Hypolipidemic Properties in Vitro[J]. Science and Technology of Food Industry, 2024, 45(12): 179-188. DOI: 10.13386/j.issn1002-0306.2023070233
    [2]ZHANG Huihui, LI Can, LIU Huiping, MA Xiaoxiao, ZHANG Xin, WANG Bing, LIU Ying. Extraction and Purification of Cinnamomum cassia Polysaccharides and Its Antioxidant and Hypoglycemic Activities in Vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 15-24. DOI: 10.13386/j.issn1002-0306.2023080088
    [3]WANG Anna, PENG Xiaowei, KAN Huan, WANG Dawei, HU Xiang, LIU Yun. Extraction of Flavonoids from Docynia delavayi and Their Antioxidant and Hypoglycemic Activities[J]. Science and Technology of Food Industry, 2023, 44(2): 232-240. DOI: 10.13386/j.issn1002-0306.2022040128
    [4]NA Zhiguo, YU Shuang, HE Shuzhen, CHU Zhong. Auxiliary Hypoglycemic Effect of Low-GI Multigrain Cocoa Powder[J]. Science and Technology of Food Industry, 2023, 44(1): 28-37. DOI: 10.13386/j.issn1002-0306.2022070134
    [5]WANG Qiudan, ZHAO Kaidi, LIN Changqing. Study on Antioxidant Properties of Pueraria lobata Polysaccharides and Its Hypoglycemic Effect[J]. Science and Technology of Food Industry, 2022, 43(5): 381-388. DOI: 10.13386/j.issn1002-0306.2021070357
    [6]LI Xia, ZHANG Guozhu, LIU Zhifei, SHAN Yang, LI Peijun, LI Jing. Hypoglycemic Activity of Enteromorpha intestinalis Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(15): 321-326. DOI: 10.13386/j.issn1002-0306.2020090021
    [7]ZHONG Li-xia, JIANG Zhen-yu, WANG Jia-ni, LI Xu-feng, XU Li-shan. Optimization of Extraction Technology of Hawthorn Polysaccharides and Its Hypoglycemic and Hypolipidemic Activity[J]. Science and Technology of Food Industry, 2019, 40(13): 119-124,147. DOI: 10.13386/j.issn1002-0306.2019.13.020
    [8]ZHANG Hui-juan, HUANG Lian-yan, YIN Meng, WANG Jing. Research on hypoglycemic function of oat peptides[J]. Science and Technology of Food Industry, 2017, (10): 360-363. DOI: 10.13386/j.issn1002-0306.2017.10.061
    [9]YE Min, WEN Zhu, PENG Yuan-fang, ZHANG Da-gui. Effects of Dictyophora rubrovalvata polysaccharide on anti- aging and hypoglycemic in mice[J]. Science and Technology of Food Industry, 2016, (07): 343-345. DOI: 10.13386/j.issn1002-0306.2016.07.057
    [10]LI Chang-qin, LU Yin, LI Xin-zheng, KANG Wen-yi. Hypoglycemic effect of two cultivates varieties of Cucurbita moschata Duch.[J]. Science and Technology of Food Industry, 2013, (19): 328-331. DOI: 10.13386/j.issn1002-0306.2013.19.002
  • Cited by

    Periodical cited type(6)

    1. 郭玉龙,邵高耸,史轻舟,许焯,胡定煜,符式瑜. 纳米材料在食品检验鉴定中的应用研究进展. 山东化工. 2024(01): 91-94 .
    2. 左海根,黄芷诺,李毛英,袁小珍,杜永琴,刘小玉,陈雨. 核酸适配体在雌二醇分析中的研究进展. 理化检验-化学分册. 2023(07): 862-868 .
    3. 唐春花,杨洁,卢晓玲,陈美仑,魏铮,余鹏,赵佳. 甾体激素核酸适配体的筛选与应用. 生物化学与生物物理进展. 2023(09): 2146-2161 .
    4. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 .
    5. 常嵘,叶巧燕,刘慧敏,郝欣雨,郭洪侠,郑楠. 牛奶中激素检测方法的研究进展. 食品安全质量检测学报. 2022(16): 5235-5243 .
    6. 史学丽,高辉,周永红,赵伟. 一种基于适配体传感器的17β-雌二醇定量分析方法. 河北工业科技. 2021(05): 431-437 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (324) PDF downloads (34) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return